Available online at www.sciencedirect.com

OURNAL OF

SCIENCE@DIRECT® COMI{UTATIONAL

s PHYSICS
ELSEVIER Journal of Computational Physics 206 (2005) 463-504

www.elsevier.com/locate/jcp

A two-level time-stepping method for layered ocean
circulation models: further development and testing

Robert L. Higdon *

Department of Mathematics, Oregon State University, Corvallis, OR 97331-4605, USA

Received 23 September 2004; received in revised form 15 December 2004; accepted 15 December 2004
Available online 25 January 2005

Abstract

In [R.L. Higdon, A two-level time-stepping method for layered ocean circulation models, J. Comput. Phys. 177
(2002) 59] a two-level time-stepping method was developed for layered ocean circulation models. The method is
designed to be used with a barotropic-baroclinic splitting that separates the fast and slow motions into subsystems that
are solved by different techniques. The discussion in Higdon (2002) includes the development of the scheme, a linearized
stability analysis, a description of some techniques for practical implementation in a nonlinear model, and some numer-
ical testing. Subsequent additional testing revealed a need for further development of the techniques for nonlinear
implementation. The purpose of the present paper is to describe these algorithmic improvements and to develop and
report some additional numerical experiments. The algorithmic issues involve the relation between velocity and momen-
tum density as layer thicknesses tend to zero, limiting mass and momentum fluxes between thick and thin cells near
variable bottom topography, solving the barotropic equations that describe the fast motions in the system, and conserv-
ing mass within individual layers. This paper also develops a test problem involving external and internal Rossby waves
in a two-layer fluid; the separation into modes makes it possible to test the time-stepping schemes for the barotropic and
baroclinic systems independently. The paper concludes with some numerical tests that include the Rossby wave prob-
lem, an upwelling/downwelling problem that involves fluid interfaces moving upward and downward along sloping
bottom topography, and a double-gyre circulation that displays meanders and eddies.
© 2005 Elsevier Inc. All rights reserved.
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1. Introduction

A time-stepping method for layered ocean circulation models was developed in [10]. The method was
designed for usage with a barotropic—baroclinic splitting, in which the fast and slow motions in the system
are approximately separated into subproblems that are solved by different techniques. The method involves
two time levels in order to avoid the sawtooth computational mode allowed by the three-level leapfrog
method, which has traditionally been used in geophysical fluid dynamics, and in order to facilitate the usage
of advection algorithms for mass and momentum. In a linearized stability analysis given in [10], the method
was shown to be stable and essentially nondissipative. Some numerical tests of the method were given in
[10], along with some preliminary ideas for practical implementation in nonlinear models. These latter ideas
were described in Section 4 of [10].

Further testing of this time-stepping scheme and associated algorithms revealed a need for further devel-
opment of the implementation procedures discussed in Section 4 of [10]. The purpose of the present paper is
to document these new developments and to describe some of the recent numerical tests.

In the terminology used here, a “layered” ocean model is one in which the vertical coordinate is
density, potential density (density adjusted adiabatically to a reference pressure), or some other related
quantity. For a given fluid parcel, such a quantity is approximately constant in time, except perhaps in
the vertically homogeneous mixed layer at the top of the ocean. In a setting of this nature, surfaces of
constant vertical coordinate are approximately material surfaces, and a vertical discretization amounts
to dividing the fluid into material layers having distinct physical properties. Subtle exchanges between
layers are then under the control of the modeler, and this can be important in situations such as long-
term climate simulations. Models with this type of vertical coordinate are also known as “isopycnic”
models.

Section 2 of the present paper summarizes the governing equations and time-stepping method used here.
Section 3 describes the algorithmic developments, which can be summarized as follows:

(1) Thin layers. In order to use a (nearly) nonoscillatory advection algorithm for momentum, the momen-
tum equation is written in a flux form with momentum density (velocity times layer thickness) as the
dependent variable. However, it is then necessary to extract an advective velocity which can be used in
the flux terms. If one simply divides momentum density by layer thickness, the results can be erratic
when the thickness tends to zero, so we describe a method for suppressing such behavior. This method
has implications for implementing the Coriolis terms, which are also discussed here.

(2) Bottom topography. Interfaces between layers can intersect the bottom of the fluid domain, which in
general can have varying elevation. At such locations a layer can have widely varying thicknesses at
adjacent grid points or cells. One issue encountered in recent experiments is the possible transport
of unrealistically large amounts of mass or momentum from a thick cell to an adjacent thin cell,
and this can generate highly irregular behavior in the computed solution. We describe a method for
limiting the fluxes of mass and momentum in such situations.

(3) Solution of the barotropic (fast) equations. An alternating-direction implicit (ADI) method for solving
this system was described in [10], and it was used successfully in some computations that involved inte-
grating to an analytical steady state. However, in a recent test involving external Rossby waves for
which the time dependence is known essentially exactly, the ADI method gave results that are highly
inaccurate. Accordingly, an alternate scheme is mentioned here, along with a discussion of some imple-
mentation issues.

(4) Conservation of mass. An equation for layer thickness in the baroclinic (slow) subsystem given by
Bleck and Smith [3] does not yield exact conservation of mass in individual layers. An alternate
approach is described here which does yield such conservation. This approach is related to ideas used
by Hallberg [8] and more recently by Bentsen and by Dukowicz (personal communications).
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Section 4 develops a test problem involving Rossby waves. These are waves for which the restoring
mechanism is based on vorticity instead of gravity, and they play an important role in the development
of large-scale circulation systems. The present test problem involves linearized motions in a two-layer fluid
in a straight channel and a linearly varying Coriolis parameter. This problem admits both gravity waves
and Rossby waves, and within each category it admits both external waves and internal waves. A simple
test involving gravity waves was given in [10], so the present emphasis is on Rossby waves. The time depen-
dences of modal solutions of this system can be determined exactly, up to the numerical accuracy in com-
puting the eigenvalues and eigenvectors of certain matrices that arise during the development of this
problem. In the barotropic-baroclinic splitting used here, the barotropic subsystem mainly represents
the relatively fast external motions, and the baroclinic subsystem mainly represents the remaining (slow)
motions. The external and internal modes in the present test problem make it possible to evaluate the
time-stepping in the two subsystems separately.

Section 5 describes the results of some numerical computations involving the algorithms described
here. The first set of computations is based on the Rossby wave test problem developed in Section
4. The second set involves a two-layer fluid with variable bottom topography, for which the interface
between the layers intersects the sloping bottom. Due to the action of wind stress at the top of the
fluid, the lower layer wells upward to the surface in some regions, and the interface moves upward
and downward along the bottom topography. For large ¢, the solutions closely match analytical stea-
dy-state solutions. The last set of computations involves a double-gyre circulation in a two-layer fluid in
a rectangular domain having a level bottom. The fluid is forced by a sinusoidally varying wind stress.
In this case the lower layer wells up to the surface in part of the domain, and the flow displays many
meanders and eddies but no numerical grid noise.

2. Governing equations and time-stepping method

The present section summarizes the systems of partial differential equations to be considered here, along
with the time-stepping method developed in [10].

2.1. Governing equations

In the following, it is assumed that the fluid is in hydrostatic balance, which is equivalent to the “‘shal-
low-water”” assumption that the depth of the fluid is small compared to the horizontal dimensions of the
phenomena being modeled. Consider a vertically discrete system consisting of R layers of constant den-
sity, and number the layers 1 through R, with the indices increasing downward. Let o, denote the specific
volume (reciprocal of density) in layer r, u(x,y,t) = (ux,y,t),v.(x,y,t)) denote the horizontal velocity in
layer r, Ap,(x,y,t) denote the vertical pressure difference between the bottom and top of layer r, and
M, (x,y,t) = o p + gz denote the Montgomery potential in layer r. Here, g is the acceleration due to grav-
ity. The hydrostatic condition dp/dz = —a~'g implies that the Montgomery potential is independent of
depth in a layer of constant density. Also let V = (0/0x,0/0y), p,(x,y,t) denote the pressure at the bottom
of layer r, f denote the Coriolis parameter, and u = (—u,,u,). We then consider the “primitive equation”
system

Ou,
ot

gAr, 1
A, +Ap V - (AzAp,Vu,), (1)

7 r

+ (.- V)u, + fu- = -VM, +

0Ap,
ot

+ V- (uAp,) =0, (2)
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Mr+l - Mr = pr(al’+1 - ar) (3)
(cf. [3]).

This system can be regarded as a stack of single-layer shallow-water models, with a means of commu-
nicating pressure effects between layers. The hydrostatic assumption implies that the pressure increment Ap,
is the weight per unit horizontal area in layer r, so the quantity u,Ap, in (2) is g times the horizontal mass
flux in that layer. The quantity Ap, will also be regarded as the “thickness’ of layer r. In the mass conser-
vation equation (2), it is assumed that there is no transport of mass between layers, for the sake of simplic-
ity. However, in a realistic ocean model it is possible for such transports to take place, as noted in Section
3.4.

In the second term on the right side of (1), the quantity Az, is a vertical difference of lateral stresses acting
on the top and bottom of layer r. These stresses are due to wind stress at the top of the fluid domain, fric-
tional stress at the bottom, and interior shear stress due to vertical variations of the horizontal velocity. The
last term on the right side of (1) represents the effect of horizontal viscosity. For most of the computations
described in Section 5, this term will be set to zero.

2.2. Barotropic-baroclinic splitting

In solutions of the system (1)—(3), the most rapid motions are external gravity waves. Here, “external”
means that all layers thicken or thin by approximately the same proportion at any given time and horizon-
tal position, so the behavior of the mass field can be detected from the motions of the free surface at the top
of the fluid. With external motions, the velocity field is very nearly independent of depth. External gravity
waves can be up to two orders of magnitude faster than other motions such as currents and internal waves,
so for the sake of computational efficiency it is advisable to model the external motions with a two-dimen-
sional subsystem (the “barotropic’ subsystem). Such a system is obtained by a vertical averaging and/or
summation of (1), (2). This system also captures external Rossby waves, which are discussed in Section
4 and which travel more slowly than the external gravity waves. The dynamics of external waves are similar
to those that would be found if one were to neglect the density variations in the ocean and then model the
ocean with the shallow-water equations for a single layer.

The remaining motions in the ocean include advective motions and internal waves. The latter are man-
ifested by motions of layer interfaces within the fluid. These relatively slow motions are fully three-dimen-
sional, and they can be modeled by a three-dimensional subsystem (the “baroclinic’’ subsystem).

The baroclinic subsystem can be solved with an explicit time discretization and a time increment A¢ that
is appropriate for resolving the slow motions. The two-dimensional barotropic subsystem can either be
solved implicitly with the same Az or explicitly with many short substeps. In the following, we use a baro-
tropic—baroclinic splitting introduced by Bleck and Smith [3], with modifications developed by Higdon and
de Szoeke [11] in order to improve its stability.

Let p} (x, ) be the pressure at the bottom of the fluid domain at a reference state, such as an equilibrium
state or initial state, and let p,(x,y,f) be the bottom pressure at an arbitrary state. Define a dimensionless
quantity #(x,y,t) by p, = p, + p,n = (1 + n)p,, so that n is the relative perturbation in bottom pressure,
with || < 1. The perturbation p}# in bottom pressure will serve as the mass variable in the barotropic sub-
system. A baroclinic mass variable Ap. can then be defined by Ap,(x,y,t) = (1 4+ n(x,»,1))Ap.(x, y,t) for
1 < r < R. This relation is based on the idea that an external wave causes all fluid layers to thicken or thin
by approximately the same proportion. It then follows that Zf:]Apj, = p,. Also define the mass-weighted
vertical average

R
0y, 1) =Y
r=1

A RAp
Pra, ="y, (4)
Py by

r=1
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which will serve as a barotropic velocity. (The second equation in (4) uses the relations
Ap, = (1 +n)Ap. and p, = (1 +n)p,.) A baroclinic velocity is then defined by u/(x,y,t) =u.(x,y,t)—
u(x,y,t), so that u, = u + u’. A comparison with (4) shows that u’ has mass-weighted vertical average equal
to zero.

A vertical average of the momentum equation (1) and a vertical sum of the mass equation (2) yield the
barotropic equations

ou _
o+ fut = VM + G, (5)
a / / —
SV =0, (©

where ut = (—v,%). In (5) the quantity VM is the mass-weighted vertical average of VM; an explicit

representation of this term is given by Higdon [9]. The quantity G(x,y,) is a residual term that includes
the vertical average of the nonlinear, stress, and viscosity terms in (1). An implementation of G is indicated
in Section 2.3.

The derivation of (6) includes an assumption that the pressure is constant at the top of the fluid, and the
divergence term uses the approximation V - (p,u) = V - (p,u), as p, = (1 + n)p}, with |y| < 1. The quantity
py1 is equal to g times the perturbation in the mass per unit horizontal area in the water column, and the
quantity pu is equal to g times the lateral mass flux over the depth of the fluid.

A manipulation of the layer thickness equation (2) given by Bleck and Smith [3] yields

0Ap, / A : /=
2+ V- (wAp) =2V - (pl). (7)
Py

However, this equation is not in conservation form, and numerical experiments have shown that the
amount of mass in individual layers can vary slightly with time, even though Eq. (2) implies that
the total mass in each layer is constant. If needed, exact conservation (up to roundoff error) can be
obtained with a method described in Section 3.4. That method employs the full thickness equation
(2) instead of (7) by enforcing a kind of compatibility between (2) and the barotropic mass equation
(6) at each baroclinic step.

A baroclinic momentum equation can be obtained by subtracting the barotropic equation (5) from (1) to
yield an equation for u.. An alternative, used in [10], is to combine such an equation with the baroclinic
thickness equation (7) to yield equations for the quantities #/Ap. and v/Ap.. Since Ap, is g times the mass
per unit horizontal area in layer r, these quantities can be regarded as components of baroclinic momentum
per unit horizontal area (times g). The equation for u/Ap. is

a / / a ! / a !/ / ! / / aMr A Vi
o WAp) + o (AR + 2 [ (4 Ap) | = fo.bp, Apr< 5~ (VM )x) +g(At),

ou

o
+V- (AHAp;Vu,) — G, Ap. — u,.Apf,—u — 0, Ap. —
Ox oy

u,Ap] -
/ V : (pbu) ’ (8)

Dy

+
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and the equation for v/Ap/ (not stated explicitly in [10]) is

a / / a / / a / / / / / aMr Swa Vi
a (UrApr) + a [u"(UrApr):I + @ [UV (vrApr)] = _furApr - Apr( ay - (VM)y) + g(AT")y

o6
+ V- (4gAp.Vv,) — G,Ap. — u,.Ap'ra—z

00 v Ap, .
— v Ap, o + e V- (p,u). )

The left sides of (8) and (9) are in flux form, which facilitates the usage of a (nearly) nonoscillatory advec-
tion scheme for those terms. As described in [10], the terms on the right side can be regarded as forcing
terms that are implemented with a Strang [18] splitting. The condition that the mass-weighted vertical aver-
age of baroclinic velocity is zero is equivalent to the zero-sum condition

R R
D uAp =) vAp =0 (10)
r=1 r=1

for baroclinic momentum.

In a numerical test involving a linear external Rossby wave described in Section 5.1, the magnitude of the
barotropic velocity is typically about three orders of magnitude larger than the baroclinic velocity. In a
similar test involving an internal Rossby wave, the magnitude of the baroclinic velocity is typically about
one to two orders of magnitude larger than the barotropic velocity. Although the above splitting is not
exact, these experiments suggest that the splitting is nearly exact, in the linear case.

2.3. Time-stepping method

This subsection summarizes the time-stepping method of [10] and associated algorithms, as modified by
the developments described in Section 3 of the present paper. In the following, it is assumed that the solu-
tion is known at time ¢, and that the solution is being computed at time ¢, + ; = ¢, + Az, where the time
increment At is appropriate for stably resolving the slow motions in the system.

1. Predict the baroclinic velocity u. = (u/,v)) at time #, . ;. To do this, use the momentum equations (8)
and (9) and baroclinic mass equation (7), with upwind approximations to the flux terms and with the
forcing terms evaluated at time #,. Use the procedure in Section 3.1 to extract u, and v/. The
quantities G, and G, in (8) and (9) are computed by enforcing the zero-sum condition (10)
on u/Ap. and v/Ap/, in a manner similar to the one described in Section 2.3 of Higdon and de Szoeke
[11].

2. Predict the barotropic variables #,7, and p,n by solving the barotropic system (5) and (6). The quan-
tity VM in (5) involves both the barotropic quantity p,n and the baroclinic mass variables Ap.. (see
[9]). During the present step, use the values of Ap/ from time #, and the value of G = (G,,G,) com-
puted in Step 1.

3. Apply a (nearly) nonoscillatory advection scheme to the thickness equation (2), together with the
procedures described in Section 3.4, to compute Ap, at time ¢, + 1. The procedures of Section 3.4 guar-
antee conservation of mass in each layer. For an advective velocity u,, use a value at time 7, + 1
=t, + At/2 obtained by adding the average of the old and predicted baroclinic velocities in layer r to
the time average of the barotropic velocities computed from time ¢, to time ¢, ;. ; during Step 2 above.
For the sake of computing forcing terms at time #, + 1, extract Ap. = Ap,/(1 + ) by using the predicted
value of 7.
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4. Correct the baroclinic velocity w. = (u/,v") by applying an advection scheme to the momentum equa-
tions (8) and (9). In the pressure and viscous terms and in the advective velocity, use time averages
of baroclinic and barotropic quantities analogous to those used in Step 3. In the Coriolis terms, use
unweighted averages of baroclinic velocities at times ¢, and ¢, + 1. The Coriolis terms are thus implicit,
and if values of u and v are defined at different spatial locations then these terms can be implemented
with an iteration. (For the computations described in Section 5, four iterations are used.)
5. Correct the barotropic variables #, 5, and p,5. For the baroclinic quantities appearing in VM, use aver-
ages of values from times ¢, and 7, ; ;. Repeat the flux adjustment described in Section 3.4, so as to
ensure compatibility between the final values of Ap, and pn.

For large-scale motions, the dominant balance in the momentum equation is typically the “geostrophic
balance’ between the Coriolis terms and the pressure gradient. Because of the time averaging used in Step
4, these terms are both evaluated at the intermediate time ¢, + 1/, during the correction step. If they were
evaluated at different times, then there would be a first-order error in the geostrophic balance.

Smolarkiewicz and Margolin [17] point out that a second-order advection algorithm requires that the
advective velocity be evaluated at time 7, + 15, SO that certain error terms are compensated appropriately.
Such an advective velocity is provided by the above scheme. The advection method used in the numerical
computations described in Section 5 is the multidimensional positive definite advection transport algorithm
(MPDATA), which is described in [17]. With this method, solutions that are initially nonnegative remain
nonnegative in the absence of forcing. This is an essential property when the layer thickness equation (2) is
solved in situations when the thicknesses can tend to zero. In the computations described in Section 5,
MPDATA is also used to solve the momentum equations. For that case MPDATA is adapted to handle
fields of varying sign by using the first of two options described in Section 3.2(4) of [17]. MPDATA involves
an upwind step followed by antidiffusive corrections, and for the computations described in Section 5 two
antidiffusive corrections are used.

3. Algorithmic developments

This section describes several developments related to the practical implementation of the two-level time-
stepping method outlined in Section 2.3. These include matters related to thin layers and Coriolis terms,
bottom topography, the solution of the barotropic equations, and conservation of mass. All of these algo-
rithmic ideas are incorporated into the numerical computations reported in Section 5.

For definiteness, it is assumed here that the system is discretized in space on a staggered “C-grid”. This
grid is used, for example, in the Miami Isopycnic Coordinate Ocean Model and in the Hybrid Coordinate
Ocean Model [2]. With this grid, values of u are defined at the centers of the edges of mass cells correspond-
ing to minimal and maximal x, and values of v are defined at the centers of the edges corresponding to
minimal and maximal y. Portions of the discussion in Section 3.1 are specific to the C-grid, but the ideas
in the remainder of Section 3 can be applied more generally.

3.1. Thin layers and Coriolis terms

In the implementation of the two-level method as described in Section 2, the dependent variables in the
baroclinic momentum equations are chosen to be the momentum densities «/Ap/ and v/ Ap’ in order that the
equations can be written in flux form for usage with a (nearly) nonoscillatory advection method. However,
at each baroclinic time step the velocities . and v/ must be extracted from the momentum densities in order
to obtain advective velocities u, = # + u, and v, = v + v, that can be used when computing fluxes of mass
and momentum. The present subsection describes a procedure for doing this on a C-grid which is simpler
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and more robust than the one described in Section 4.3 of [10]. This procedure has implications for the
implementation of the Coriolis terms, and this matter is discussed here as well.

For definiteness, consider the extraction of u. from u Ap/.. Both of these quantities are defined at
u-points. In order to obtain u/ at any such point, one could simply divide . Ap’. by a value of Ap/ at that
u-point, which will be denoted here by (Ap.)". However, the value of (Ap.)" must be obtained from some
kind of interpolation between the values of Ap! at adjacent mass points, and this interpolated value is af-
fected by interpolation error and by numerical errors in the values being interpolated. As (Ap.)" — 0, these
errors can cause erratic behavior in the values of «/ that are extracted, in the sense that || can exceed phys-
ically realistic bounds at various locations. These erratic values can then cause a violation of the Courant—
Friedrichs—Lewy stability condition.

Section 4.3 of [10] described a method for controlling the erratic behavior by limiting the mass fluxes that
are generated by the extracted velocities. Schir and Smolarkiewicz [16] had earlier developed a different
procedure for extracting velocity from momentum density. In their analysis the momentum and mass vari-
ables are defined at the same points, and they limited antidiffusive corrections to mass and momentum
fluxes so that the ratio of momentum density and layer thickness is bounded.

In order to describe the present extraction process in greater detail, consider the extraction of velocity dur-
ing the correction step for the two-level method; the case of the prediction step is analogous but simpler. At a
certain stage, the algorithm has produced a provisional value for ' Ap’ in layer r at time ¢, + 1, based on the
effects of the nonlinear terms, forcing terms such as VM, and the average of the Coriolis term based on velocity
at time ¢, and the Coriolis term based on the predicted velocity at time ¢, + ;. The next step is to introduce the
effects of shear stresses between layers (i.e., vertical viscosity). These effects represent a vertical diffusion of
velocity, not momentum, so the values of velocity must enter the computation explicitly at this stage. The result
of this step is velocity instead of momentum density. As noted in Section 4.4 of [10], if (Ap)" — 0 the effect of
the shear stress is to cause /. to tend to the average of the values of i in the layers immediately above and/or
below layer r. This regularizing effect then suppresses erratic behavior in the velocity field in thin layers.

In [10] the momentum densities «/Ap’. and v/Ap/ are then reconstructed with a multiplication. In the
u-equation, the Coriolis term fuv/Ap/ is iterated so that the value of this term is based on the final value
of v Ap, at time ¢, +; instead of the predicted value. Due to the staggered nature of the C-grid, the
value of v/Ap. at a u-point was taken to be a simple four-point average of v/Ap. at the four nearest
v-points. The iteration of Coriolis terms modifies the momentum density «/Ap/, and it could lead to
substantial changes in the corresponding value of u; for example, this could happen if the thickness
Ap. at one of the neighboring v-points is many times greater than the thickness at the u-point in ques-
tion. At locations where the layer thickness tends to zero, the relative variation in Ap/ between consec-
utive grid points can be substantial and actually unbounded, and the corresponding effect on velocity
can also be unbounded. The implementation of the Coriolis terms in momentum form thus compro-
mises the regularizing effect of the shear stress, and it is then necessary to adopt an extraction
procedure which limits velocity, such as the one described in Section 4.3 of [10].

However, the following alternative is simpler, and experiments suggest that it is also more reliable. When
the shear stress has been implemented, the result of that step is velocity instead of momentum density, and
the velocities in thin layers are typically well-behaved in the sense of lying between physically realistic
bounds. At this stage, simply keep the problem in terms of velocity for a while longer, before the final values
of momentum are obtained by multiplying by values of Ap/. at velocity points. That is, the Coriolis terms are
implemented with a fixed-point iteration of the implicit equations

. . A, e
i =y I ),

U/n+l _ ( /)* _fﬁ(ulwrl _ u/pred)7

r r r
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where «™ and v/ are values of «' and v’ produced during the prediction step, and («.)* and (1)) repre-
sent the results of the implementation of shear stress during the present correction step. The division by 2
on the right sides of (11) is due to the averaging of data from times ¢, and ¢, + |, and the former has already
been incorporated into («.)" and (v])". Also, values of (x.)" and (v.)" include Coriolis terms at time ¢, +
based on predicted velocity, and the quantities on the right side of (11) represent corrections to such terms.
On a C-grid, the values of «/ and v/ are defined at different spatial locations, so the terms involving f on the
right side of (11) involve some spatial averages.

For example, consider the u-point located at position (x; _ 1»,;) between the mass cells with centers at
(x; — 1,y;) and (x;,y;). The four v-points that are closest to u-point (x; _ 15, »;) are then (x;y;+ 1) and
(x; — 1, + 1/2)- The Coriolis term fv at the u-point (x; _ 1/2,y;) could then be represented with the unweighted
average of v at the four neighbors. An alternative is a mass-weighted average described by Sadourny [15] in
the context of the shallow-water equations for a single-layer fluid. Sadourny showed that if the shallow-
water system is discretized in space on a C-grid, with ¢ remaining continuous, then the total energy in
the system is unaffected by the Coriolis terms if the following averaging scheme is used to implement those
terms. At the v-point (x;,y; — 1/2), define a two-point sum of thicknesses by Si;—1» = Ap}; + Ap]; . At the
point (X; _ 12,y — 1,2), which lies on a corner of four mass cells, a value of fv can be defined by the
mass-weighted average

Sii_ Sic1-
J—1/2 Vi1 + 1j-1/2

UVi—1,-1/2>

(f”)l;l/zfl/z = fi-12j-1)2 [S

ii—1/2 + Sic1j-1/2 Sij—12 +Sic1j-12

which involves the thicknesses at those four neighboring cells. A value of fv at the u-point (x; _ 12, ;) is then
given by

. Iy,
(f0) 10, = 3 [(fv)i_uz,j—uz + (f0) 10012 - (12)

If the Coriolis terms are discretized either with unweighted averages or with the Sadourny energy-
conserving scheme (12), then the value of |fv| at a u-point does not exceed |f] times the maximum value
of |v] found at the four neighbors. Such an approach, combined with the regularization provided by the
implementation of shear stress, suppresses erratic behavior in the velocity field in a multi-layer model. After
the implementation of Coriolis terms produces values of «/ and v/, the final values of momentum density
are obtained by multiplying by values of Ap/ at u-points and v-points, respectively.

If a model is run without an implementation of shear stress between layers, and if layer thicknesses can
tend to zero with the configuration being used, then the following procedure can be used to suppress erratic
velocities. If the thickness of the layer drops below a prescribed threshold (e.g. a fraction of a meter), then
require that the velocity in a given layer must be the average of the values in the layers immediately above
and/or below. If the thickness is above a larger threshold (e.g. twice the preceding), then impose no such
requirement. If the thickness is between the two thresholds, then use a linear transition between these
two cases. This process can be implemented by solving a linear system in the vertical dimension, at each
horizontal location. Once this regularization is performed, the Coriolis terms can be implemented as above.

3.2. Bottom topography

The present subsection describes a procedure for limiting mass and momentum fluxes near variable bot-
tom topography. In the absence of such a limiter, thin cells can experience inputs of mass or momentum
which are physically unrealistic and which can generate irregular behavior and violations of the
Courant—Friedrichs—Lewy condition.

The issue of variable bottom topography was also discussed in Section 4.5 of [10]. In that discussion the
main issue was the computation of the layer thickness Ap! at velocity points on a C-grid. For definiteness,
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consider such a computation at a u-point. The procedure in [10] yields a positive value of the interpolated
thickness (Ap.)" if and only if a centered difference approximation to dM,/dx is considered to have physical
significance, according to criteria described in [10]. At locations where layer interfaces intersect bottom
topography it is possible for such numerical approximations to be meaningless in terms of the dynamics
of the fluid, and the goal is to prevent such cases from affecting the computed solution. As (Ap.)* — 0
the momentum equation is considered to lose its physical significance, but in that case the velocity u/ tends
to the average of the velocities in the layers that are immediately above and/or below. In effect, the momen-
tum equation in layer r is disregarded in such situations, as desired.

In the interpolation scheme described in [10], the bottom topography is regarded as piecewise constant,
with the constants representing averages in mass cells. The idea of piecewise constant (‘“‘stairstep’) topog-
raphy will also be used here to discuss a different issue, which is related to fluxes of mass and momentum.

Fig. 1(a) illustrates this issue for the case of mass flux. In this figure the horizontal axis is the x-axis and
variations with respect to y are not illustrated. At the location of mass cell A, the bottom topography is
much lower than at mass cell B. The boxed region in mass cell A (including the shaded subregion at the
top) represents the mass in a given layer r in that cell, and the boxed region in cell B represents the mass
in the same layer, but in cell B. However, in cell B layer » is much thinner than in cell A.

Now consider the possible transfer of mass between the two cells in layer r. For the sake of simplicity,
suppose that the upwind method is used as the advection scheme. In that case, the mass flux at a cell edge
is the velocity at the edge times the layer thickness in the upstream direction, i.e., in the cell that is being
drained. Suppose that this advective velocity u, is negative, and suppose that the magnitude of «, would cause
some portion, say 10%, of the fluid in cell B to move into cell A in one time step. This transfer of mass has a
very small effect on cell A. However, suppose u, > 0 and that 10% of the mass in cell A would move into cell
B. This would have a very large effect on cell B, and it could involve lifting some mass up over the bottom
topography. One can question whether a transfer of this magnitude is physically reasonable, and in addition
it can set up a lateral pressure gradient in layer r which can generate large and irregular velocities.

For such situations, define the “available mass” in layer r at a cell edge to be the amount of mass in the
cell in the upstream direction that lies above the stairstep bottom topography. In Fig. 1(a) the available
mass for the case u, > 0 is illustrated by the shaded subregion at the top of the boxed region in cell A.
The upwind method can be modified by defining the mass flux at a cell edge to be the normal velocity

A B A B

i

(a) (b)

Fig. 1. Limiting mass and momentum fluxes near bottom topography. (a) Mass. The dark region indicates bottom topography, and
the boxes indicate the mass in a given layer in mass cells A and B. The shaded subregion at the top of cell A illustrates the available
mass at the cell edge, for the case where the advective velocity at that edge is positive. If this velocity is negative, then the available mass
in the given layer is the entire content of cell B. (b) Momentum. This similar to (a), except that the momentum cells are centered at
velocity points, which lie on the edges of mass cells.



R.L. Higdon | Journal of Computational Physics 206 (2005) 463-504 473

at that edge times the density of available mass (i.e., available mass per unit horizontal area) in the upstream
direction. In the situation illustrated in Fig. 1(a), the available masses for the two cases u, > 0 and u, < 0 are
similar. Transfers of mass between cells A and B would have similar magnitudes for advective velocities of
similar magnitudes but opposite signs.

If the multi-dimensional positive definite advection transport algorithm of Smolarkiewicz and collabo-
rators (e.g. [17]) is used, then the upwind scheme is corrected with some antidiffusive iterations. The formu-
las for such iterations use values of mass quantities, and in the present situation the values of available mass
can be used for those quantities. This strategy was used for the computations described in Section 5.

Using the concept of available mass does not prevent the upward movement of fluid along bottom
topography. In some upwelling numerical experiments described in Section 5, wind stress at the free surface
causes lateral movement of fluid in the upper layer, and the fluid in the lower layer can then well upward
along a slanting bottom. When the fluid in one cell reaches sufficient elevation, then with the present strat-
egy it can spill over into an adjacent cell, and the upwelling continues.

The concept of available mass can be formulated as follows. Consider the u-point (x; _ 1,2, y;) between the
mass cells with centers at (x; — 1,);) and (x;,))). Let (p,),_, »; denote the value of p} at this u-point. In accor-
dance with the idea of stairstep topography used above and in Section 4.5 of [10] (and also by Bleck and
Smith [3]), this value is defined by (p}),_/,; = min((p},),;, (}),_1 ) i.e., it is the minimum of pj, in the adja-
cent mass cells. Equivalently, the elevation z of the bottom topography at a u-point is the maximum of the
elevations of the bottom topography in the adjacent mass cells. This idea is equivalent to the concept of
“shelf horizon depth” used by Holland and Jenkins [12]. Also let (p,_,), ,; and (p,_,),; denote the values

of baroclinic pressure at the top of layer r at the mass points (x; _ 1,y;) and (x;,)), respectively. If the advec-
tive velocity at the u-point (x; _ 12, ;) is positive, then the available mass density in the upstream direction is
min {(Apr)i—lmmax {(p;;)i—l/Z,j - (p;—l)i—l,j’ O} } (13)

(Here, a quantity Ap is termed a “mass’ density, even though it is really the weight per unit horizontal
area.) If the advective velocity is negative, the available mass density is

min {(Apr)[,j’ max |:(p;7)i—l/2d’ - (p;—l)zxp 0} } (14)

The quantity max([(p},), ;/»; — (P._1),_1,, 0] in (13) measures the vertical distance, in pressure units, from the

bottom topography to the top of layer r in the upstream direction for that case. This quantity is zero if the
bottom topography is the higher of the two. Baroclinic pressures are used to determine the vertical distance,
as total pressures can include variations in the free-surface elevation and give misleading results. If the ver-
tical distance is greater than the thickness (Ap,);_1 ;, then the entire layer r in the upstream cell is available,
as indicated by (13); otherwise, only the portion above the bottom topography is available. The increment
Ap, in total pressure is used here instead of the baroclinic pressure increment Ap/, in anticipation of solving
the mass conservation equation for total pressure as described in Section 3.4.

The concept of available mass is consistent with the process of solving the barotropic mass equation (6), in
the case where the values of pj at velocity points are defined as above. In that equation, the mass fluxes in the
x- and y-directions are p,u and p; v, respectively. In a straightforward discretization of (6) the mass flux at u-
point (x; _ 1/, can be taken to be (p,),_, 12> 1.€., it is the value of  at that point times the depth of fluid (in
pressure units) lying above the stairstep bottom topography. When modeling the transport of mass within an
individual layer, it is then consistent to consider only the portion of the layer that lies above the bottom
topography. This point will turn out to be significant for a flux adjustment process described in Section 3.4.

Fig. 1(b) is similar to Fig. 1(a) and illustrates the situation for momentum flux. With the C-grid, momen-
tum cells are centered at the edges of mass cells, and this accounts for the difference between the two
pictures. In analogy with the preceding discussion, define the “available momentum” at the edge of a
u-momentum cell to be the proportion of the upstream cell that lies above elevation of the bottom
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topography at the u-point, times the momentum density u/Ap/ in the upstream cell. If this concept is not
used, then a small portion of the momentum in a thick momentum cell can be transferred into a thin
momentum cell, and this translates into a large velocity that can violate the Courant-Friedrichs—Lewy con-
dition. For an analogy, consider a cannon ball and a tennis ball traveling at the same velocity; if a small
percentage of the momentum in the cannon ball is transferred to the tennis ball, then the latter will begin
moving very quickly indeed. The concept of available momentum can be formulated in a manner similar to
(13) and (14), and the details will be omitted here.

3.3. Solution of the barotropic equations

The barotropic subsystem (5) and (6) can be solved implicitly with the same Az that is used for the
baroclinic subsystem, or it can be solved explicitly with many short substeps. In the numerical tests of
the two-level method described in [10], the barotropic equations were solved with an adaptation of an
alternating-direction implicit (ADI) method that was used by Bates [1] for the shallow water equations
for a single-layer fluid. However, in the more recent numerical computations involving Rossby waves that
are reported in Section 5.1 of the present paper, one of the tests involves a pure external Rossby wave.
This test mainly exercises the barotropic solver, and with the ADI method the computed solution is
highly inaccurate. With a long baroclinic Az one would not expect to resolve the rapidly moving external
gravity waves, in any case. Given that a slower Rossby wave is also not represented accurately with this
ADI method, it seems advisable to consider an alternative for solving the barotropic equations.

One simple option is an explicit forward-backward method that was used by Bleck and Smith [3], in
which the mass equation is advanced with a forward step and the results are then used to advance the
momentum equations. This method was used successfully in the computations described in Section 5.
Denote the barotropic time increment by A7 = A¢/N, where At is the baroclinic time increment and N is
the number of barotropic substeps per baroclinic step. The mass variable p,# is advanced from barotropic
substep m to substep m + 1 with

p"t = pn" — (ADV - (py)". (15)

For notational simplicity, discretizations with respect to x and y are not represented here. If m is even,
advance the barotropic velocity components # and v by

T e Sy + (Af) fo" — %’Hl] )
_ B (16)
and if m is odd use -
ot =" + (A7) E L %/[W] 7
_ ¥ (17)
@ — @ 4 (AT) | fo 661;4 +1]

Once an updated value of a velocity component is computed, it is used immediately in the Coriolis term for
the other component. The alternation of order between even and odd steps provides an unbiased treatment
of the Coriolis terms, and it resembles the operator splitting of Strang [18]. The quantities
OM /0x and OM /0y are mass-weighted vertical averages, as formulated by Higdon [9]. The algorithm as
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described by Bleck and Smith [3] does not use these averages, but instead it uses the approximations
000 (py1n)/0x and 000(p)1)/dy, where oy is a representative value of specific volume.

Following are some remarks that are not restricted to the time-stepping method (15)-(17), but instead
apply more generally. The quantities 0M /0x and 0M /Oy involve the barotropic mass variable p}#n, with
coefficients that involve baroclinic quantities. In the particular case of (16) and (17), the values of pyn
are taken from time level m + 1, as indicated by the superscripts on 0M /Ox and 0M /0y. During the predic-
tion step from baroclinic time ¢, to baroclinic time ¢, + |, the baroclinic coefficients are equal to their values
at time ¢,, and during the correction step these are averages of values from times ¢, and ¢, + ;.

An alternative to holding these coefficients constant during the correction step would be to interpolate
linearly in ¢. Higdon and de Szoeke [11] used such an interpolation during linearized stability analyses of
two different time-stepping schemes for the coupled barotropic-baroclinic system, and in each case the
amplitudes of the eigenvalues of the amplification matrix show extremely narrow spikes as a function of
wavenumber. In these analyses the barotropic equations were solved exactly in ¢ in order to isolate the ef-
fects of the barotropic-baroclinic splitting and the overall time-stepping scheme. Subsequent analyses
(unpublished) indicated that the spikes disappear when the baroclinic coefficients are averaged and not
interpolated. Accordingly, interpolation was not considered during the later linearized stability analysis
of the two-level method given in [10].

One consequence of using constant values for the baroclinic coefficients of pjn in 0M /0x and M /0y is
that the barotropic subsystem experiences a small discontinuity in ¢ in the pressure forcing between consec-
utive baroclinic time intervals. In some tests involving external Rossby waves, noise eventually developed in
the barotropic subsystem, and this was apparently due to the repeated impulsive forcing caused by the dis-
continuity. This noise was successfully removed by the following process.

Let #°, 1°, and p,n° denote the values of the barotropic variables at the beginning of a (long) baroclinic
time interval. Compute the solution at the first barotropic step, and then compute the averages
u? = @ +u")/2,0"? = (?° + ') /2, and p,n'/? = (p,n° + p,n')/2. This averaging is done in order to filter
sawtooth behavior in z, but for smooth solutions this process is second-order accurate in ¢. If the barotropic
computation is then carried forward with the values #'/?, ©'/2, and p,n'/?> and with time increment A7, the
computation will yield the solution at half-integer barotropic steps and thus will not end exactly at the end
of the baroclinic time interval. Accordingly, compute for one step to produce #*/?, v¥/2, and pj,n*?. Repeat
the averaging process to obtain #', v', and pjn', and then continue on to the end of the baroclinic time
interval without any further averaging. This process was used in the numerical computations reported in
Section 5.

The computational cost of solving the barotropic equations explicitly with short substeps, relative to the
cost of the remainder of the algorithm, depends on the number of layers and on the number of barotropic
substeps per baroclinic step. The latter depends on the ratio of the external wave speed to the largest of the
internal wave speeds, which in turn depends on the thicknesses and densities of the various layers. In the
tests involving Rossby waves in a two-layer fluid reported in Section 5.1, there are 35 barotropic substeps
per baroclinic step. In that case the computational time spent on the barotropic subsystem, for the predic-
tion and correction steps combined, was a little less than half the total computational time. In other words,
the computational cost of the barotropic subsystem was comparable to that of two layers. Here, a serial
workstation was used. As the number of layers increases, the time spent on the barotropic equations
remains constant, whereas the cost of the remainder of the algorithm increases proportionately.

3.4. Conservation of mass

With the barotropic—-baroclinic splitting outlined in Section 2.2, the mass equation (7) can be used to
update the baroclinic layer thickness Ap/. However, this equation is not in conservation form, and numer-
ical experiments have shown that this equation does not yield conservation of mass in each layer. The
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purpose of the present subsection is to outline an alternate method that yields exact conservation of mass in
each layer, up to roundoff error.

The main idea of this method is to use the mass equation (2) in the unsplit system and enforce a kind of
consistency between (2) and the barotropic mass equation (6). Various versions of this strategy have also
been used by other investigators, as described below. The purpose of the present subsection is to give one
formulation and exposition of this approach and to contribute to a complete description of the methods
that are used in the numerical computations described in Section 5.

A reason for seeking exact conservation is the following. In the governing Egs. (1)-(3) considered in
the present paper, it is assumed for simplicity that there is no transfer of mass between layers. How-
ever, a realistic isopycnic model would allow for such transfers. Vertical diffusion of heat and/or salt
can cause movement of surfaces of constant density (e.g. [4]), so an observer located on such a surface
would witness fluid parcels crossing that surface. If density (or a related quantity) is used as the vertical
coordinate, then the vertical diffusion of heat and/or salt is manifested by a transport of mass between
layers. Now suppose that a numerical algorithm allows spurious transports of mass between layers in
situations where the governing equations do not admit physical transports. If such an algorithm is then
applied to situations where physical transports can take place, the computed results will contain a com-
bination of physical transports and spurious numerical effects. This process can compromise the accu-
racy of simulations in which thermodynamic effects are important, such as long-term climate
simulations.

The mass equation (2) in the unsplit system is in conservation form, and exact conservation of mass in
each layer (up to roundoff error) would be obtained by using this equation instead of the baroclinic equa-
tion (7). However, the quantity Ap, in (2) is the total layer thickness, and it fully contains the effects of
rapidly moving external gravity waves. If this equation is solved with a value of At that is appropriate for
resolving the slow motions in the system, then there is a danger of computational instability. This pros-
pect is the reason for (approximately) splitting the fast and slow motions into separate subproblems.

In order to investigate this issue, first consider a two-layer fluid for which the flow is a small perturbation
of a stationary state having a level free surface, a level interface between layers, and a level bottom. This is
the same situation considered in the linearized stability analysis in [10]. Let Ap, denote the equilibrium
thickness of layer r (in pressure units) for r = 1,2. Also let Ap, and Ap. denote the perturbations in total
thickness and baroclinic thickness, respectively, of layer r. In this notation, the pressure splitting defined
in Section 2.2 is Ap, + Ap, = (1 +n)(Ap, + Apl); if the product of the small quantities n and Ap. is ne-
glected, the result is the linearized splitting Ap, = Ap/ + nAp,. In this same notation, the layer thickness
equation (2) can be written in the linearized form

)

5 (Ap) + ABY -u, =0, (18)
When the linearized pressure splitting is inserted into (18), along with the relation u, = u + u/, the result is

O (h SO A |ON _

E(Ap’) +Ap,V -u. + Ap, &—I—V-u =0. (19)

The quantities Ap. and n approximately represent the separation of the mass field into slowly varying and
rapidly varying quantities, respectively, so Eq. (19) displays explicitly the multiple time scales contained in
(18).

However, Eq. (18) would not be used in isolation, but instead would be used here as part of a coupled
barotropic—baroclinic splitting. In the present linearized setting, the barotropic mass equation (6) is

Tivaa=o, (20)
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when (20) is inserted into (19), the result is

2 (a0l) + 85,V -, =0, (21)

which is the linearization of the baroclinic mass equation (7). Using the total mass equations (18) and (19)
in conjunction with the barotropic mass equation (20) is thus equivalent to using the baroclinic mass equa-
tion (21) with the barotropic equation (20).

The latter pairing, of (20) and (21), was used in the linearized stability analysis of the two-level method in
[10], and the conclusion of that analysis was that the algorithm is stable in the linear case. The preceding
discussion suggests that if Eq. (2) for total thickness Ap, (not the baroclinic thickness Ap!) is used in the
barotropic-baroclinic splitting, and if the results from the barotropic mass equation (6) are incorporated
into the implementation of (2) in some appropriate manner, then it might be possible to obtain an algo-
rithm that behaves stably. The question is how to do this.

The approach used here is to adjust the lateral mass fluxes in individual layers so that the vertical sum of
these fluxes equals the flux used for the barotropic mass equation (6), at each edge of each mass cell. These
adjustments maintain conservation form, so the total mass in each layer is conserved. The idea of flux
adjustment is implicit in a method of Hallberg [8]; during a discussion of a split-explicit time-stepping meth-
od, Hallberg mentions briefly that he modifies the mass equation in each layer so that the barotropic veloc-
ity equals the mass-weighted vertical average of the advective velocities that are used to advance the layer
thicknesses. Multiplication by bottom pressure yields a statement about mass fluxes. Hallberg states that
this modification to the layer thickness equation filters the fast external gravity waves from that equation.
Related ideas involving flux adjustment have recently been developed by Mats Bentsen (personal commu-
nication) and John Dukowicz (personal communication and [5]), and their formulations and experiences
will be reported elsewhere.

In the version described below, the flux adjustment is done in an upwind manner in order to preserve
nonnegative layer thicknesses, and the concept of available mass described in Section 3.2 is used for the
sake of implementation with variable bottom topography. Numerous numerical experiments with zero
explicit viscosity over long time intervals suggest numerical stability of this scheme. In addition, these
experiments indicate that the mass in each layer is conserved exactly, up to roundoff error.

With the two-level time-stepping method described in [10], the layer thickness is updated after the baro-
tropic variables are predicted. When the barotropic equations are mentioned in the following discussion,
the results from the prediction step can be assumed. Once the updated values of layer thicknesses are com-
puted and adjusted, they are used immediately to compute forcing terms at the new time ¢, + ;. With the
two-level scheme the barotropic variables are later corrected, and afterward the flux adjustment mentioned
in Eq. (29) is applied again, so as to ensure consistency between the final values of layer mass variables and
the barotropic mass variable.

Suppose that Eq. (2), 9(Ap,)/0t + V - (u,Ap,) = 0, is approximated in a given mass cell with a conservative
scheme of the form
At X— X+ At y— v+
Here, F,~ is a value of mass flux (with units of velocity times pressure) at the edge of the cell corresponding
to minimal x, F*" is a flux at the edge corresponding to maximal x, and F?~ and F”" are analogous quan-
tities in the y-direction. Now sum (22) over all layers (1 < r < R), and observe that the sum of Ap, over all
layers is equal to the bottom pressure p, = p, + p}#, to obtain

R R
e -y
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At = Ay +
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ppl T =P+ Ax . (23)
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The bottom pressure perturbation p,n""! can also be computed by using the barotropic mass equation
(6), o(pyn)/ot+V - (pyu) =0. Suppose that this equation is solved explicitly with time increment
Af = At/N, where N is the number of barotropic substeps of the baroclinic time interval [¢,,.#, + ]. The algo-
rithm at each substep can be written in the form

n,m n,m A_ X xX+\" AE
PR = g S () = ()] 4

N & ()" = )" (24)

where p,i™" = pin"; pyrN = pl*'; and (H)™ and (H™*)" are values of pju and p, b, respectively, at the
appropriate cell edges. Summation of (24) over all barotropic substeps yields

At |1 3 1 = At |1 = 1 =
7 on+1 /oon H)Y" — 2 I_[yJr 25
Pl =P A N Zm:o( "N Zm:o( "I T a v Z — TN Zm:O 25)

since A7 = At¢/N.

Eqs. (23) and (25) provide two independent methods for computing the perturbation p;n in bottom pres-
sure (or equivalently, the bottom pressure p,). These two methods give consistent results if
SR F.= ﬁZﬁZ;& (H)™ at each cell edge, i.e., if the vertical sum of the layer fluxes equals the time average
of the barotropic flux at each edge. However, in general this is not exactly the case, due to different numer-
ical methods being used in the barotropic and baroclinic subsystems.

One method for enforcing consistency is the following. At a given cell edge e (where e = x—, x+, y—, or
y+) define the flux deficit

lNl

D= ; ZF (26)
and then apportion this deficit over all of the layers, in some manner. Here, the deficit is distributed pro-
portionately in a mass-weighted, upwind fashion. Define Ap?*P¥" to be the available mass density in layer r
at edge e in the upwind direction, where “upwind” is defined by the sign of D¢, “available mass” is defined
in Section 3.2, and values of Ap, are taken from the output from the conservative scheme (22). If D¢ > 0 the
upwind direction is on the negative side of edge e, and if D’ < 0 the upwind direction is on the positive side
of edge e. Then let pi*™™ = SF Apowrvind; according to the definition of available mass, po"™™™ is
approximately equal to pj at edge e. Now define the flux adjustments

e,upwind
Are (Afupwmd )De (27)
Py

and use these adjustments to modify the scheme (22). More explicitly, the initial application of (22) yields

LAl [P~ — P, (28)

v+ R lEr - ]+

Ax

values of Ap! are used to define the quantities Ap?*P* "¢ and thus the adjustments A¢, and the adjustments
are then applied to give

Ap; =

»

) (29)

At
n+l __ * X— _ qx+
Ap™ = Apl +—— [A,, A7 ] + A

Ax
Combining (28) and (29) yields

At At
A = A [(F A7) = (R A7) 4 [P 4 47) = (R 4 47)]. (30)
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Now sum (30) over all layers. At each edge e, the vertical sum of the adjusted fluxes is

R . R , Ape ,upwind 1 N-1 o
ZF +A Z ,+D (Z eupwmd) :NZ(H) ’ (31)
=1 =1 —1 Pp m=0

With the scheme (30), the vertical sum of the lateral mass fluxes over all layers has thus been adjusted to be
equal to the time average of the barotropic flux. The layer equations and the barotropic mass equation then
give consistent values of bottom pressure, as desired.

In the preceding discussion, the concept of available mass is used to apportion the flux deficit among the
various layers, for the following reason. It is possible for a layer r to abut steep bottom topography, at some
u-point, and for its upper boundary to lie below the stairstep representation of the topography at that
u-point. In that case, the flux in layer r across that u-point should be zero, even after the flux deficit is dis-
tributed across various layers. If the available mass is used to determine this distribution, then the zero-flux<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>