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Abstract

In [R.L. Higdon, A two-level time-stepping method for layered ocean circulation models, J. Comput. Phys. 177

(2002) 59] a two-level time-stepping method was developed for layered ocean circulation models. The method is

designed to be used with a barotropic–baroclinic splitting that separates the fast and slow motions into subsystems that

are solved by different techniques. The discussion in Higdon (2002) includes the development of the scheme, a linearized

stability analysis, a description of some techniques for practical implementation in a nonlinear model, and some numer-

ical testing. Subsequent additional testing revealed a need for further development of the techniques for nonlinear

implementation. The purpose of the present paper is to describe these algorithmic improvements and to develop and

report some additional numerical experiments. The algorithmic issues involve the relation between velocity and momen-

tum density as layer thicknesses tend to zero, limiting mass and momentum fluxes between thick and thin cells near

variable bottom topography, solving the barotropic equations that describe the fast motions in the system, and conserv-

ing mass within individual layers. This paper also develops a test problem involving external and internal Rossby waves

in a two-layer fluid; the separation into modes makes it possible to test the time-stepping schemes for the barotropic and

baroclinic systems independently. The paper concludes with some numerical tests that include the Rossby wave prob-

lem, an upwelling/downwelling problem that involves fluid interfaces moving upward and downward along sloping

bottom topography, and a double-gyre circulation that displays meanders and eddies.
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1. Introduction

A time-stepping method for layered ocean circulation models was developed in [10]. The method was

designed for usage with a barotropic–baroclinic splitting, in which the fast and slow motions in the system

are approximately separated into subproblems that are solved by different techniques. The method involves
two time levels in order to avoid the sawtooth computational mode allowed by the three-level leapfrog

method, which has traditionally been used in geophysical fluid dynamics, and in order to facilitate the usage

of advection algorithms for mass and momentum. In a linearized stability analysis given in [10], the method

was shown to be stable and essentially nondissipative. Some numerical tests of the method were given in

[10], along with some preliminary ideas for practical implementation in nonlinear models. These latter ideas

were described in Section 4 of [10].

Further testing of this time-stepping scheme and associated algorithms revealed a need for further devel-

opment of the implementation procedures discussed in Section 4 of [10]. The purpose of the present paper is
to document these new developments and to describe some of the recent numerical tests.

In the terminology used here, a ‘‘layered’’ ocean model is one in which the vertical coordinate is

density, potential density (density adjusted adiabatically to a reference pressure), or some other related

quantity. For a given fluid parcel, such a quantity is approximately constant in time, except perhaps in

the vertically homogeneous mixed layer at the top of the ocean. In a setting of this nature, surfaces of

constant vertical coordinate are approximately material surfaces, and a vertical discretization amounts

to dividing the fluid into material layers having distinct physical properties. Subtle exchanges between

layers are then under the control of the modeler, and this can be important in situations such as long-
term climate simulations. Models with this type of vertical coordinate are also known as ‘‘isopycnic’’

models.

Section 2 of the present paper summarizes the governing equations and time-stepping method used here.

Section 3 describes the algorithmic developments, which can be summarized as follows:

(1) Thin layers. In order to use a (nearly) nonoscillatory advection algorithm for momentum, the momen-

tum equation is written in a flux form with momentum density (velocity times layer thickness) as the

dependent variable. However, it is then necessary to extract an advective velocity which can be used in
the flux terms. If one simply divides momentum density by layer thickness, the results can be erratic

when the thickness tends to zero, so we describe a method for suppressing such behavior. This method

has implications for implementing the Coriolis terms, which are also discussed here.

(2) Bottom topography. Interfaces between layers can intersect the bottom of the fluid domain, which in

general can have varying elevation. At such locations a layer can have widely varying thicknesses at

adjacent grid points or cells. One issue encountered in recent experiments is the possible transport

of unrealistically large amounts of mass or momentum from a thick cell to an adjacent thin cell,

and this can generate highly irregular behavior in the computed solution. We describe a method for
limiting the fluxes of mass and momentum in such situations.

(3) Solution of the barotropic (fast) equations. An alternating-direction implicit (ADI) method for solving

this system was described in [10], and it was used successfully in some computations that involved inte-

grating to an analytical steady state. However, in a recent test involving external Rossby waves for

which the time dependence is known essentially exactly, the ADI method gave results that are highly

inaccurate. Accordingly, an alternate scheme is mentioned here, along with a discussion of some imple-

mentation issues.

(4) Conservation of mass. An equation for layer thickness in the baroclinic (slow) subsystem given by
Bleck and Smith [3] does not yield exact conservation of mass in individual layers. An alternate

approach is described here which does yield such conservation. This approach is related to ideas used

by Hallberg [8] and more recently by Bentsen and by Dukowicz (personal communications).
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Section 4 develops a test problem involving Rossby waves. These are waves for which the restoring

mechanism is based on vorticity instead of gravity, and they play an important role in the development

of large-scale circulation systems. The present test problem involves linearized motions in a two-layer fluid

in a straight channel and a linearly varying Coriolis parameter. This problem admits both gravity waves

and Rossby waves, and within each category it admits both external waves and internal waves. A simple
test involving gravity waves was given in [10], so the present emphasis is on Rossby waves. The time depen-

dences of modal solutions of this system can be determined exactly, up to the numerical accuracy in com-

puting the eigenvalues and eigenvectors of certain matrices that arise during the development of this

problem. In the barotropic–baroclinic splitting used here, the barotropic subsystem mainly represents

the relatively fast external motions, and the baroclinic subsystem mainly represents the remaining (slow)

motions. The external and internal modes in the present test problem make it possible to evaluate the

time-stepping in the two subsystems separately.

Section 5 describes the results of some numerical computations involving the algorithms described
here. The first set of computations is based on the Rossby wave test problem developed in Section

4. The second set involves a two-layer fluid with variable bottom topography, for which the interface

between the layers intersects the sloping bottom. Due to the action of wind stress at the top of the

fluid, the lower layer wells upward to the surface in some regions, and the interface moves upward

and downward along the bottom topography. For large t, the solutions closely match analytical stea-

dy-state solutions. The last set of computations involves a double-gyre circulation in a two-layer fluid in

a rectangular domain having a level bottom. The fluid is forced by a sinusoidally varying wind stress.

In this case the lower layer wells up to the surface in part of the domain, and the flow displays many
meanders and eddies but no numerical grid noise.
2. Governing equations and time-stepping method

The present section summarizes the systems of partial differential equations to be considered here, along

with the time-stepping method developed in [10].

2.1. Governing equations

In the following, it is assumed that the fluid is in hydrostatic balance, which is equivalent to the ‘‘shal-

low-water’’ assumption that the depth of the fluid is small compared to the horizontal dimensions of the

phenomena being modeled. Consider a vertically discrete system consisting of R layers of constant den-

sity, and number the layers 1 through R, with the indices increasing downward. Let ar denote the specific

volume (reciprocal of density) in layer r, ur(x,y, t) = (ur(x,y, t),vr(x,y, t)) denote the horizontal velocity in

layer r, Dpr(x,y, t) denote the vertical pressure difference between the bottom and top of layer r, and
Mr(x,y, t) = a p + gz denote the Montgomery potential in layer r. Here, g is the acceleration due to grav-

ity. The hydrostatic condition op/oz = �a�1g implies that the Montgomery potential is independent of

depth in a layer of constant density. Also let $ = (o/ox,o/oy), pr(x,y, t) denote the pressure at the bottom

of layer r, f denote the Coriolis parameter, and u?r ¼ ð�vr; urÞ. We then consider the ‘‘primitive equation’’

system
our

ot
þ ur � rð Þur þ f u?r ¼ �rMr þ

gDsr
Dpr

þ 1

Dpr
r � AHDprrurð Þ; ð1Þ

oDpr
ot

þr � urDprð Þ ¼ 0; ð2Þ
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Mrþ1 �Mr ¼ prðarþ1 � arÞ ð3Þ
(cf. [3]).

This system can be regarded as a stack of single-layer shallow-water models, with a means of commu-

nicating pressure effects between layers. The hydrostatic assumption implies that the pressure increment Dpr
is the weight per unit horizontal area in layer r, so the quantity urDpr in (2) is g times the horizontal mass

flux in that layer. The quantity Dpr will also be regarded as the ‘‘thickness’’ of layer r. In the mass conser-
vation equation (2), it is assumed that there is no transport of mass between layers, for the sake of simplic-

ity. However, in a realistic ocean model it is possible for such transports to take place, as noted in Section

3.4.

In the second term on the right side of (1), the quantity Dsr is a vertical difference of lateral stresses acting
on the top and bottom of layer r. These stresses are due to wind stress at the top of the fluid domain, fric-

tional stress at the bottom, and interior shear stress due to vertical variations of the horizontal velocity. The

last term on the right side of (1) represents the effect of horizontal viscosity. For most of the computations

described in Section 5, this term will be set to zero.
2.2. Barotropic–baroclinic splitting

In solutions of the system (1)–(3), the most rapid motions are external gravity waves. Here, ‘‘external’’

means that all layers thicken or thin by approximately the same proportion at any given time and horizon-

tal position, so the behavior of the mass field can be detected from the motions of the free surface at the top

of the fluid. With external motions, the velocity field is very nearly independent of depth. External gravity

waves can be up to two orders of magnitude faster than other motions such as currents and internal waves,
so for the sake of computational efficiency it is advisable to model the external motions with a two-dimen-

sional subsystem (the ‘‘barotropic’’ subsystem). Such a system is obtained by a vertical averaging and/or

summation of (1), (2). This system also captures external Rossby waves, which are discussed in Section

4 and which travel more slowly than the external gravity waves. The dynamics of external waves are similar

to those that would be found if one were to neglect the density variations in the ocean and then model the

ocean with the shallow-water equations for a single layer.

The remaining motions in the ocean include advective motions and internal waves. The latter are man-

ifested by motions of layer interfaces within the fluid. These relatively slow motions are fully three-dimen-
sional, and they can be modeled by a three-dimensional subsystem (the ‘‘baroclinic’’ subsystem).

The baroclinic subsystem can be solved with an explicit time discretization and a time increment Dt that
is appropriate for resolving the slow motions. The two-dimensional barotropic subsystem can either be

solved implicitly with the same Dt or explicitly with many short substeps. In the following, we use a baro-

tropic–baroclinic splitting introduced by Bleck and Smith [3], with modifications developed by Higdon and

de Szoeke [11] in order to improve its stability.

Let p0bðx; yÞ be the pressure at the bottom of the fluid domain at a reference state, such as an equilibrium

state or initial state, and let pb(x,y,t) be the bottom pressure at an arbitrary state. Define a dimensionless
quantity g(x,y, t) by pb ¼ p0b þ p0bg ¼ ð1þ gÞp0b, so that g is the relative perturbation in bottom pressure,

with |g| � 1. The perturbation p0bg in bottom pressure will serve as the mass variable in the barotropic sub-

system. A baroclinic mass variable Dp0r can then be defined by Dprðx; y; tÞ ¼ ð1þ gðx; y; tÞÞDp0rðx; y; tÞ for

1 6 r 6 R. This relation is based on the idea that an external wave causes all fluid layers to thicken or thin

by approximately the same proportion. It then follows that
PR

r¼1Dp
0
r ¼ p0b. Also define the mass-weighted

vertical average
�uðx; y; tÞ ¼
XR
r¼1

Dpr
pb

ur ¼
XR
r¼1

Dp0r
p0b

ur; ð4Þ
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which will serve as a barotropic velocity. (The second equation in (4) uses the relations

Dpr ¼ ð1þ gÞDp0r and pb ¼ ð1þ gÞp0b.) A baroclinic velocity is then defined by u0rðx; y; tÞ ¼ urðx; y; tÞ�
�uðx; y; tÞ, so that ur ¼ �uþ u0r. A comparison with (4) shows that u

0
has mass-weighted vertical average equal

to zero.

A vertical average of the momentum equation (1) and a vertical sum of the mass equation (2) yield the
barotropic equations
o�u

ot
þ f �u? ¼ �rM þG; ð5Þ

o

ot
ðp0bgÞ þ r � ðp0b�uÞ ¼ 0; ð6Þ
where �u? ¼ ð��v; �uÞ. In (5) the quantity rM is the mass-weighted vertical average of $M; an explicit

representation of this term is given by Higdon [9]. The quantity G(x,y, t) is a residual term that includes
the vertical average of the nonlinear, stress, and viscosity terms in (1). An implementation of G is indicated

in Section 2.3.

The derivation of (6) includes an assumption that the pressure is constant at the top of the fluid, and the

divergence term uses the approximation r � ðpb�uÞ � r � ðp0b�uÞ; as pb ¼ ð1þ gÞp0b with |g| � 1. The quantity

p0bg is equal to g times the perturbation in the mass per unit horizontal area in the water column, and the

quantity p0b�u is equal to g times the lateral mass flux over the depth of the fluid.

A manipulation of the layer thickness equation (2) given by Bleck and Smith [3] yields
oDp0r
ot

þr � urDp0r
� �

¼ Dp0r
p0b

r � ðp0b�uÞ: ð7Þ
However, this equation is not in conservation form, and numerical experiments have shown that the
amount of mass in individual layers can vary slightly with time, even though Eq. (2) implies that

the total mass in each layer is constant. If needed, exact conservation (up to roundoff error) can be

obtained with a method described in Section 3.4. That method employs the full thickness equation

(2) instead of (7) by enforcing a kind of compatibility between (2) and the barotropic mass equation

(6) at each baroclinic step.

A baroclinic momentum equation can be obtained by subtracting the barotropic equation (5) from (1) to

yield an equation for u0r. An alternative, used in [10], is to combine such an equation with the baroclinic

thickness equation (7) to yield equations for the quantities u0rDp
0
r and v0rDp

0
r. Since Dpr is g times the mass

per unit horizontal area in layer r, these quantities can be regarded as components of baroclinic momentum

per unit horizontal area (times g). The equation for u0rDp
0
r is
o

ot
u0rDp

0
r

� �
þ o

ox
ur u0rDp

0
r

� �� �
þ o

oy
vr u0rDp

0
r

� �� �
¼ fv0rDp

0
r � Dp0r

oMr

ox
� ðrMÞx

� �
þ gðDsrÞx

þr � AHDp0rrur
� �

� GxDp0r � urDp0r
o�u
ox

� vrDp0r
o�u
oy

þ u0rDp
0
r r � ðp0b�uÞ; ð8Þ
p0b
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and the equation for v0rDp
0
r (not stated explicitly in [10]) is
o

ot
v0rDp

0
r

� �
þ o

ox
ur v0rDp

0
r

� �� �
þ o

oy
vr v0rDp

0
r

� �� �
¼ �fu0rDp

0
r � Dp0r

oMr

oy
� ðrMÞy

� �
þ gðDsrÞy

þr � AHDp0rrvr
� �

� GyDp0r � urDp0r
o�v
ox

� vrDp0r
o�v
oy

þ v0rDp
0
r

p0b
r � ðp0b�uÞ: ð9Þ
The left sides of (8) and (9) are in flux form, which facilitates the usage of a (nearly) nonoscillatory advec-

tion scheme for those terms. As described in [10], the terms on the right side can be regarded as forcing

terms that are implemented with a Strang [18] splitting. The condition that the mass-weighted vertical aver-

age of baroclinic velocity is zero is equivalent to the zero-sum condition
XR
r¼1

u0rDp
0
r ¼

XR
r¼1

v0rDp
0
r ¼ 0 ð10Þ
for baroclinic momentum.

In a numerical test involving a linear external Rossby wave described in Section 5.1, the magnitude of the

barotropic velocity is typically about three orders of magnitude larger than the baroclinic velocity. In a
similar test involving an internal Rossby wave, the magnitude of the baroclinic velocity is typically about

one to two orders of magnitude larger than the barotropic velocity. Although the above splitting is not

exact, these experiments suggest that the splitting is nearly exact, in the linear case.
2.3. Time-stepping method

This subsection summarizes the time-stepping method of [10] and associated algorithms, as modified by

the developments described in Section 3 of the present paper. In the following, it is assumed that the solu-
tion is known at time tn and that the solution is being computed at time tn + 1 = tn + Dt, where the time

increment Dt is appropriate for stably resolving the slow motions in the system.

1. Predict the baroclinic velocity u0r ¼ ðu0r; v0rÞ at time tn + 1. To do this, use the momentum equations (8)

and (9) and baroclinic mass equation (7), with upwind approximations to the flux terms and with the

forcing terms evaluated at time tn. Use the procedure in Section 3.1 to extract u0r and v0r. The

quantities Gx and Gy in (8) and (9) are computed by enforcing the zero-sum condition (10)

on u0rDp
0
r and v0rDp

0
r, in a manner similar to the one described in Section 2.3 of Higdon and de Szoeke

[11].

2. Predict the barotropic variables �u;�v; and p0bg by solving the barotropic system (5) and (6). The quan-

tity rM in (5) involves both the barotropic quantity p0bg and the baroclinic mass variables Dp0r (see

[9]). During the present step, use the values of Dp0r from time tn and the value of G = (Gx,Gy) com-

puted in Step 1.

3. Apply a (nearly) nonoscillatory advection scheme to the thickness equation (2), together with the

procedures described in Section 3.4, to compute Dpr at time tn + 1. The procedures of Section 3.4 guar-

antee conservation of mass in each layer. For an advective velocity ur, use a value at time tn + 1/2

= tn + Dt/2 obtained by adding the average of the old and predicted baroclinic velocities in layer r to

the time average of the barotropic velocities computed from time tn to time tn + 1 during Step 2 above.

For the sake of computing forcing terms at time tn + 1, extract Dp0r ¼ Dpr=ð1þ gÞ by using the predicted

value of g.
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4. Correct the baroclinic velocity u0r ¼ ðu0r; v0rÞ by applying an advection scheme to the momentum equa-

tions (8) and (9). In the pressure and viscous terms and in the advective velocity, use time averages

of baroclinic and barotropic quantities analogous to those used in Step 3. In the Coriolis terms, use

unweighted averages of baroclinic velocities at times tn and tn + 1. The Coriolis terms are thus implicit,

and if values of u and v are defined at different spatial locations then these terms can be implemented
with an iteration. (For the computations described in Section 5, four iterations are used.)

5. Correct the barotropic variables �u;�v; and p0bg. For the baroclinic quantities appearing in rM , use aver-

ages of values from times tn and tn + 1. Repeat the flux adjustment described in Section 3.4, so as to

ensure compatibility between the final values of Dpr and p0bg.

For large-scale motions, the dominant balance in the momentum equation is typically the ‘‘geostrophic

balance’’ between the Coriolis terms and the pressure gradient. Because of the time averaging used in Step

4, these terms are both evaluated at the intermediate time tn + 1/2 during the correction step. If they were
evaluated at different times, then there would be a first-order error in the geostrophic balance.

Smolarkiewicz and Margolin [17] point out that a second-order advection algorithm requires that the

advective velocity be evaluated at time tn + 1/2, so that certain error terms are compensated appropriately.

Such an advective velocity is provided by the above scheme. The advection method used in the numerical

computations described in Section 5 is the multidimensional positive definite advection transport algorithm

(MPDATA), which is described in [17]. With this method, solutions that are initially nonnegative remain

nonnegative in the absence of forcing. This is an essential property when the layer thickness equation (2) is

solved in situations when the thicknesses can tend to zero. In the computations described in Section 5,
MPDATA is also used to solve the momentum equations. For that case MPDATA is adapted to handle

fields of varying sign by using the first of two options described in Section 3.2(4) of [17]. MPDATA involves

an upwind step followed by antidiffusive corrections, and for the computations described in Section 5 two

antidiffusive corrections are used.
3. Algorithmic developments

This section describes several developments related to the practical implementation of the two-level time-

stepping method outlined in Section 2.3. These include matters related to thin layers and Coriolis terms,

bottom topography, the solution of the barotropic equations, and conservation of mass. All of these algo-

rithmic ideas are incorporated into the numerical computations reported in Section 5.

For definiteness, it is assumed here that the system is discretized in space on a staggered ‘‘C-grid’’. This

grid is used, for example, in the Miami Isopycnic Coordinate Ocean Model and in the Hybrid Coordinate

Ocean Model [2]. With this grid, values of u are defined at the centers of the edges of mass cells correspond-

ing to minimal and maximal x, and values of v are defined at the centers of the edges corresponding to
minimal and maximal y. Portions of the discussion in Section 3.1 are specific to the C-grid, but the ideas

in the remainder of Section 3 can be applied more generally.

3.1. Thin layers and Coriolis terms

In the implementation of the two-level method as described in Section 2, the dependent variables in the

baroclinic momentum equations are chosen to be the momentum densities u0rDp
0
r and v0rDp

0
r in order that the

equations can be written in flux form for usage with a (nearly) nonoscillatory advection method. However,
at each baroclinic time step the velocities u0r and v0r must be extracted from the momentum densities in order

to obtain advective velocities ur ¼ �uþ u0r and vr ¼ �vþ v0r that can be used when computing fluxes of mass

and momentum. The present subsection describes a procedure for doing this on a C-grid which is simpler
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and more robust than the one described in Section 4.3 of [10]. This procedure has implications for the

implementation of the Coriolis terms, and this matter is discussed here as well.

For definiteness, consider the extraction of u0r from u0rDp
0
r. Both of these quantities are defined at

u-points. In order to obtain u0r at any such point, one could simply divide u0rDp
0
r by a value of Dp0r at that

u-point, which will be denoted here by ðDp0rÞ
u
. However, the value of ðDp0rÞ

u
must be obtained from some

kind of interpolation between the values of Dp0r at adjacent mass points, and this interpolated value is af-

fected by interpolation error and by numerical errors in the values being interpolated. As ðDp0rÞ
u ! 0, these

errors can cause erratic behavior in the values of u0r that are extracted, in the sense that ju0rj can exceed phys-

ically realistic bounds at various locations. These erratic values can then cause a violation of the Courant–

Friedrichs–Lewy stability condition.

Section 4.3 of [10] described a method for controlling the erratic behavior by limiting the mass fluxes that

are generated by the extracted velocities. Schär and Smolarkiewicz [16] had earlier developed a different

procedure for extracting velocity from momentum density. In their analysis the momentum and mass vari-
ables are defined at the same points, and they limited antidiffusive corrections to mass and momentum

fluxes so that the ratio of momentum density and layer thickness is bounded.

In order to describe the present extraction process in greater detail, consider the extraction of velocity dur-

ing the correction step for the two-level method; the case of the prediction step is analogous but simpler. At a

certain stage, the algorithm has produced a provisional value for u
0
Dp

0
in layer r at time tn + 1, based on the

effects of the nonlinear terms, forcing terms such asrM , and the average of theCoriolis term based on velocity

at time tn and the Coriolis term based on the predicted velocity at time tn + 1. The next step is to introduce the

effects of shear stresses between layers (i.e., vertical viscosity). These effects represent a vertical diffusion of
velocity, notmomentum, so the values of velocitymust enter the computation explicitly at this stage. The result

of this step is velocity instead of momentum density. As noted in Section 4.4 of [10], if ðDp0rÞ
u ! 0 the effect of

the shear stress is to cause u0r to tend to the average of the values of u
0
in the layers immediately above and/or

below layer r. This regularizing effect then suppresses erratic behavior in the velocity field in thin layers.

In [10] the momentum densities u0rDp
0
r and v0rDp

0
r are then reconstructed with a multiplication. In the

u-equation, the Coriolis term fv0rDp
0
r is iterated so that the value of this term is based on the final value

of v0rDp
0
r at time tn + 1 instead of the predicted value. Due to the staggered nature of the C-grid, the

value of v0rDp
0
r at a u-point was taken to be a simple four-point average of v0rDp

0
r at the four nearest

v-points. The iteration of Coriolis terms modifies the momentum density u0rDp
0
r, and it could lead to

substantial changes in the corresponding value of u0r; for example, this could happen if the thickness

Dp0r at one of the neighboring v-points is many times greater than the thickness at the u-point in ques-

tion. At locations where the layer thickness tends to zero, the relative variation in Dp0r between consec-

utive grid points can be substantial and actually unbounded, and the corresponding effect on velocity

can also be unbounded. The implementation of the Coriolis terms in momentum form thus compro-

mises the regularizing effect of the shear stress, and it is then necessary to adopt an extraction

procedure which limits velocity, such as the one described in Section 4.3 of [10].
However, the following alternative is simpler, and experiments suggest that it is also more reliable. When

the shear stress has been implemented, the result of that step is velocity instead of momentum density, and

the velocities in thin layers are typically well-behaved in the sense of lying between physically realistic

bounds. At this stage, simply keep the problem in terms of velocity for a while longer, before the final values

of momentum are obtained by multiplying by values of Dp0r at velocity points. That is, the Coriolis terms are

implemented with a fixed-point iteration of the implicit equations
u0
nþ1

r ¼ ðu0rÞ
� þ fDt

2
ðv0nþ1

r � v0
pred

r Þ;

v0
nþ1

r ¼ ðv0rÞ
� � fDt ðu0nþ1

r � u0
pred

r Þ;
ð11Þ
2
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where u0
pred

r and v0
pred

r are values of u
0
and v

0
produced during the prediction step, and ðu0rÞ

�
and ðv0rÞ

�
repre-

sent the results of the implementation of shear stress during the present correction step. The division by 2

on the right sides of (11) is due to the averaging of data from times tn and tn + 1, and the former has already

been incorporated into ðu0rÞ
�
and ðv0rÞ

�
. Also, values of ðu0rÞ

�
and ðv0rÞ

�
include Coriolis terms at time tn + 1

based on predicted velocity, and the quantities on the right side of (11) represent corrections to such terms.
On a C-grid, the values of u0r and v0r are defined at different spatial locations, so the terms involving f on the

right side of (11) involve some spatial averages.

For example, consider the u-point located at position (xi � 1/2,yj) between the mass cells with centers at

(xi � 1,yj) and (xi,yj). The four v-points that are closest to u-point (xi � 1/2,yj) are then (xi,yj ± 1/2) and

(xi � 1,yj ± 1/2). The Coriolis term fv at the u-point (xi � 1/2,yj) could then be represented with the unweighted

average of v at the four neighbors. An alternative is a mass-weighted average described by Sadourny [15] in

the context of the shallow-water equations for a single-layer fluid. Sadourny showed that if the shallow-

water system is discretized in space on a C-grid, with t remaining continuous, then the total energy in
the system is unaffected by the Coriolis terms if the following averaging scheme is used to implement those

terms. At the v-point (xi,yj � 1/2), define a two-point sum of thicknesses by Si;j�1=2 ¼ Dp0i;j þ Dp0i;j�1. At the

point (xi � 1/2,yj � 1/2), which lies on a corner of four mass cells, a value of fv can be defined by the

mass-weighted average
ðfvÞi�1=2;j�1=2 ¼ fi�1=2;j�1=2

Si;j�1=2

Si;j�1=2 þ Si�1;j�1=2

vi;j�1=2 þ
Si�1;j�1=2

Si;j�1=2 þ Si�1;j�1=2

vi�1;j�1=2

� �
;

which involves the thicknesses at those four neighboring cells. A value of fv at the u-point (xi � 1/2,yj) is then
given by
ðfvÞi�1=2;j ¼
1

2
ðfvÞi�1=2;j�1=2 þ ðfvÞi�1=2;jþ1=2

h i
: ð12Þ
If the Coriolis terms are discretized either with unweighted averages or with the Sadourny energy-

conserving scheme (12), then the value of |fv| at a u-point does not exceed |f| times the maximum value

of |v| found at the four neighbors. Such an approach, combined with the regularization provided by the
implementation of shear stress, suppresses erratic behavior in the velocity field in a multi-layer model. After

the implementation of Coriolis terms produces values of u0r and v0r, the final values of momentum density

are obtained by multiplying by values of Dp0r at u-points and v-points, respectively.

If a model is run without an implementation of shear stress between layers, and if layer thicknesses can

tend to zero with the configuration being used, then the following procedure can be used to suppress erratic

velocities. If the thickness of the layer drops below a prescribed threshold (e.g. a fraction of a meter), then

require that the velocity in a given layer must be the average of the values in the layers immediately above

and/or below. If the thickness is above a larger threshold (e.g. twice the preceding), then impose no such
requirement. If the thickness is between the two thresholds, then use a linear transition between these

two cases. This process can be implemented by solving a linear system in the vertical dimension, at each

horizontal location. Once this regularization is performed, the Coriolis terms can be implemented as above.
3.2. Bottom topography

The present subsection describes a procedure for limiting mass and momentum fluxes near variable bot-

tom topography. In the absence of such a limiter, thin cells can experience inputs of mass or momentum
which are physically unrealistic and which can generate irregular behavior and violations of the

Courant–Friedrichs–Lewy condition.

The issue of variable bottom topography was also discussed in Section 4.5 of [10]. In that discussion the

main issue was the computation of the layer thickness Dp0r at velocity points on a C-grid. For definiteness,
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consider such a computation at a u-point. The procedure in [10] yields a positive value of the interpolated

thickness ðDp0rÞ
u
if and only if a centered difference approximation to oMr/ox is considered to have physical

significance, according to criteria described in [10]. At locations where layer interfaces intersect bottom

topography it is possible for such numerical approximations to be meaningless in terms of the dynamics

of the fluid, and the goal is to prevent such cases from affecting the computed solution. As ðDp0rÞ
u ! 0

the momentum equation is considered to lose its physical significance, but in that case the velocity u0r tends
to the average of the velocities in the layers that are immediately above and/or below. In effect, the momen-

tum equation in layer r is disregarded in such situations, as desired.

In the interpolation scheme described in [10], the bottom topography is regarded as piecewise constant,

with the constants representing averages in mass cells. The idea of piecewise constant (‘‘stairstep’’) topog-

raphy will also be used here to discuss a different issue, which is related to fluxes of mass and momentum.

Fig. 1(a) illustrates this issue for the case of mass flux. In this figure the horizontal axis is the x-axis and

variations with respect to y are not illustrated. At the location of mass cell A, the bottom topography is
much lower than at mass cell B. The boxed region in mass cell A (including the shaded subregion at the

top) represents the mass in a given layer r in that cell, and the boxed region in cell B represents the mass

in the same layer, but in cell B. However, in cell B layer r is much thinner than in cell A.

Now consider the possible transfer of mass between the two cells in layer r. For the sake of simplicity,

suppose that the upwind method is used as the advection scheme. In that case, the mass flux at a cell edge

is the velocity at the edge times the layer thickness in the upstream direction, i.e., in the cell that is being

drained. Suppose that this advective velocity ur is negative, and suppose that the magnitude of urwould cause

some portion, say 10%, of the fluid in cell B to move into cell A in one time step. This transfer of mass has a
very small effect on cell A. However, suppose ur > 0 and that 10% of the mass in cell A would move into cell

B. This would have a very large effect on cell B, and it could involve lifting some mass up over the bottom

topography. One can question whether a transfer of this magnitude is physically reasonable, and in addition

it can set up a lateral pressure gradient in layer r which can generate large and irregular velocities.

For such situations, define the ‘‘available mass’’ in layer r at a cell edge to be the amount of mass in the

cell in the upstream direction that lies above the stairstep bottom topography. In Fig. 1(a) the available

mass for the case ur > 0 is illustrated by the shaded subregion at the top of the boxed region in cell A.

The upwind method can be modified by defining the mass flux at a cell edge to be the normal velocity
Fig. 1. Limiting mass and momentum fluxes near bottom topography. (a) Mass. The dark region indicates bottom topography, and

the boxes indicate the mass in a given layer in mass cells A and B. The shaded subregion at the top of cell A illustrates the available

mass at the cell edge, for the case where the advective velocity at that edge is positive. If this velocity is negative, then the available mass

in the given layer is the entire content of cell B. (b) Momentum. This similar to (a), except that the momentum cells are centered at

velocity points, which lie on the edges of mass cells.
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at that edge times the density of availablemass (i.e., available mass per unit horizontal area) in the upstream

direction. In the situation illustrated in Fig. 1(a), the available masses for the two cases ur > 0 and ur < 0 are

similar. Transfers of mass between cells A and B would have similar magnitudes for advective velocities of

similar magnitudes but opposite signs.

If the multi-dimensional positive definite advection transport algorithm of Smolarkiewicz and collabo-
rators (e.g. [17]) is used, then the upwind scheme is corrected with some antidiffusive iterations. The formu-

las for such iterations use values of mass quantities, and in the present situation the values of available mass

can be used for those quantities. This strategy was used for the computations described in Section 5.

Using the concept of available mass does not prevent the upward movement of fluid along bottom

topography. In some upwelling numerical experiments described in Section 5, wind stress at the free surface

causes lateral movement of fluid in the upper layer, and the fluid in the lower layer can then well upward

along a slanting bottom. When the fluid in one cell reaches sufficient elevation, then with the present strat-

egy it can spill over into an adjacent cell, and the upwelling continues.
The concept of available mass can be formulated as follows. Consider the u-point (xi � 1/2,yj) between the

mass cells with centers at (xi � 1,yj) and (xi,yj). Let ðp0bÞi�1=2;j denote the value of p
0
b at this u-point. In accor-

dance with the idea of stairstep topography used above and in Section 4.5 of [10] (and also by Bleck and

Smith [3]), this value is defined by ðp0bÞi�1=2;j ¼ minððp0bÞi;j; ðp0bÞi�1;jÞ, i.e., it is the minimum of p0b in the adja-

cent mass cells. Equivalently, the elevation z of the bottom topography at a u-point is the maximum of the

elevations of the bottom topography in the adjacent mass cells. This idea is equivalent to the concept of

‘‘shelf horizon depth’’ used by Holland and Jenkins [12]. Also let ðp0r�1Þi�1;j and ðp0r�1Þi;j denote the values

of baroclinic pressure at the top of layer r at the mass points (xi � 1,yj) and (xi,yj), respectively. If the advec-
tive velocity at the u-point (xi � 1/2,yj) is positive, then the available mass density in the upstream direction is
min ðDprÞi�1;j;max ðp0bÞi�1=2;j � ðp0r�1Þi�1;j; 0
h in o

: ð13Þ
(Here, a quantity Dp is termed a ‘‘mass’’ density, even though it is really the weight per unit horizontal

area.) If the advective velocity is negative, the available mass density is
min ðDprÞi;j;max ðp0bÞi�1=2;j � ðp0r�1Þi;j; 0
h in o

: ð14Þ
The quantity max½ðp0bÞi�1=2;j � ðp0r�1Þi�1;j; 0� in (13) measures the vertical distance, in pressure units, from the

bottom topography to the top of layer r in the upstream direction for that case. This quantity is zero if the
bottom topography is the higher of the two. Baroclinic pressures are used to determine the vertical distance,

as total pressures can include variations in the free-surface elevation and give misleading results. If the ver-

tical distance is greater than the thickness (Dpr)i�1,j, then the entire layer r in the upstream cell is available,

as indicated by (13); otherwise, only the portion above the bottom topography is available. The increment

Dpr in total pressure is used here instead of the baroclinic pressure increment Dp0r, in anticipation of solving

the mass conservation equation for total pressure as described in Section 3.4.

The concept of available mass is consistent with the process of solving the barotropic mass equation (6), in

the case where the values of p0b at velocity points are defined as above. In that equation, the mass fluxes in the
x- and y-directions are p0b�u and p0b�v, respectively. In a straightforward discretization of (6) the mass flux at u-

point (xi � 1/2,yj) can be taken to be ðp0b�uÞi�1=2;j, i.e., it is the value of �u at that point times the depth of fluid (in

pressure units) lying above the stairstep bottom topography. When modeling the transport of mass within an

individual layer, it is then consistent to consider only the portion of the layer that lies above the bottom

topography. This point will turn out to be significant for a flux adjustment process described in Section 3.4.

Fig. 1(b) is similar to Fig. 1(a) and illustrates the situation for momentum flux. With the C-grid, momen-

tum cells are centered at the edges of mass cells, and this accounts for the difference between the two

pictures. In analogy with the preceding discussion, define the ‘‘available momentum’’ at the edge of a
u-momentum cell to be the proportion of the upstream cell that lies above elevation of the bottom
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topography at the u-point, times the momentum density u0rDp
0
r in the upstream cell. If this concept is not

used, then a small portion of the momentum in a thick momentum cell can be transferred into a thin

momentum cell, and this translates into a large velocity that can violate the Courant–Friedrichs–Lewy con-

dition. For an analogy, consider a cannon ball and a tennis ball traveling at the same velocity; if a small

percentage of the momentum in the cannon ball is transferred to the tennis ball, then the latter will begin
moving very quickly indeed. The concept of available momentum can be formulated in a manner similar to

(13) and (14), and the details will be omitted here.

3.3. Solution of the barotropic equations

The barotropic subsystem (5) and (6) can be solved implicitly with the same Dt that is used for the

baroclinic subsystem, or it can be solved explicitly with many short substeps. In the numerical tests of

the two-level method described in [10], the barotropic equations were solved with an adaptation of an
alternating-direction implicit (ADI) method that was used by Bates [1] for the shallow water equations

for a single-layer fluid. However, in the more recent numerical computations involving Rossby waves that

are reported in Section 5.1 of the present paper, one of the tests involves a pure external Rossby wave.

This test mainly exercises the barotropic solver, and with the ADI method the computed solution is

highly inaccurate. With a long baroclinic Dt one would not expect to resolve the rapidly moving external

gravity waves, in any case. Given that a slower Rossby wave is also not represented accurately with this

ADI method, it seems advisable to consider an alternative for solving the barotropic equations.

One simple option is an explicit forward–backward method that was used by Bleck and Smith [3], in
which the mass equation is advanced with a forward step and the results are then used to advance the

momentum equations. This method was used successfully in the computations described in Section 5.

Denote the barotropic time increment by D�t ¼ Dt=N , where Dt is the baroclinic time increment and N is

the number of barotropic substeps per baroclinic step. The mass variable p0bg is advanced from barotropic

substep m to substep m + 1 with
p0bg
mþ1 ¼ p0bg

m � ðD�tÞr � ðp0b�uÞ
m
: ð15Þ
For notational simplicity, discretizations with respect to x and y are not represented here. If m is even,

advance the barotropic velocity components �u and �v by
�umþ1 ¼ �um þ ðD�tÞ f�vm � oM
ox

mþ1
" #

;

�vmþ1 ¼ �vm þ ðD�tÞ �f �umþ1 � oM
oy

mþ1
" #

;

ð16Þ
and if m is odd use
�vmþ1 ¼ �vm þ ðD�tÞ �f �um � oM
oy

mþ1
" #

;

�umþ1 ¼ �um þ ðD�tÞ f�vmþ1 � oM
ox

mþ1
" #

:

ð17Þ
Once an updated value of a velocity component is computed, it is used immediately in the Coriolis term for

the other component. The alternation of order between even and odd steps provides an unbiased treatment

of the Coriolis terms, and it resembles the operator splitting of Strang [18]. The quantities

oM=ox and oM=oy are mass-weighted vertical averages, as formulated by Higdon [9]. The algorithm as



R.L. Higdon / Journal of Computational Physics 206 (2005) 463–504 475
described by Bleck and Smith [3] does not use these averages, but instead it uses the approximations

a0oðp0bgÞ=ox and a0oðp0bgÞ=oy, where a0 is a representative value of specific volume.

Following are some remarks that are not restricted to the time-stepping method (15)–(17), but instead

apply more generally. The quantities oM=ox and oM=oy involve the barotropic mass variable p0bg, with
coefficients that involve baroclinic quantities. In the particular case of (16) and (17), the values of p0bg
are taken from time level m + 1, as indicated by the superscripts on oM=ox and oM=oy. During the predic-

tion step from baroclinic time tn to baroclinic time tn + 1, the baroclinic coefficients are equal to their values

at time tn, and during the correction step these are averages of values from times tn and tn + 1.

An alternative to holding these coefficients constant during the correction step would be to interpolate

linearly in t. Higdon and de Szoeke [11] used such an interpolation during linearized stability analyses of

two different time-stepping schemes for the coupled barotropic–baroclinic system, and in each case the

amplitudes of the eigenvalues of the amplification matrix show extremely narrow spikes as a function of

wavenumber. In these analyses the barotropic equations were solved exactly in t in order to isolate the ef-
fects of the barotropic–baroclinic splitting and the overall time-stepping scheme. Subsequent analyses

(unpublished) indicated that the spikes disappear when the baroclinic coefficients are averaged and not

interpolated. Accordingly, interpolation was not considered during the later linearized stability analysis

of the two-level method given in [10].

One consequence of using constant values for the baroclinic coefficients of p0bg in oM=ox and oM=oy is

that the barotropic subsystem experiences a small discontinuity in t in the pressure forcing between consec-

utive baroclinic time intervals. In some tests involving external Rossby waves, noise eventually developed in

the barotropic subsystem, and this was apparently due to the repeated impulsive forcing caused by the dis-
continuity. This noise was successfully removed by the following process.

Let �u0; �v0; and p0bg
0 denote the values of the barotropic variables at the beginning of a (long) baroclinic

time interval. Compute the solution at the first barotropic step, and then compute the averages
�u1=2 ¼ ð�u0 þ �u1Þ=2;�v1=2 ¼ ð�v0 þ �v1Þ=2; and p0bg

1=2 ¼ ðp0bg0 þ p0bg
1Þ=2. This averaging is done in order to filter

sawtooth behavior in t, but for smooth solutions this process is second-order accurate in t. If the barotropic

computation is then carried forward with the values �u1=2; �v1=2; and p0bg
1=2 and with time increment D�t, the

computation will yield the solution at half-integer barotropic steps and thus will not end exactly at the end

of the baroclinic time interval. Accordingly, compute for one step to produce �u3=2; �v3=2; and p0bg
3=2. Repeat

the averaging process to obtain �u1; �v1; and p0bg
1, and then continue on to the end of the baroclinic time

interval without any further averaging. This process was used in the numerical computations reported in

Section 5.

The computational cost of solving the barotropic equations explicitly with short substeps, relative to the

cost of the remainder of the algorithm, depends on the number of layers and on the number of barotropic

substeps per baroclinic step. The latter depends on the ratio of the external wave speed to the largest of the

internal wave speeds, which in turn depends on the thicknesses and densities of the various layers. In the

tests involving Rossby waves in a two-layer fluid reported in Section 5.1, there are 35 barotropic substeps
per baroclinic step. In that case the computational time spent on the barotropic subsystem, for the predic-

tion and correction steps combined, was a little less than half the total computational time. In other words,

the computational cost of the barotropic subsystem was comparable to that of two layers. Here, a serial

workstation was used. As the number of layers increases, the time spent on the barotropic equations

remains constant, whereas the cost of the remainder of the algorithm increases proportionately.

3.4. Conservation of mass

With the barotropic–baroclinic splitting outlined in Section 2.2, the mass equation (7) can be used to

update the baroclinic layer thickness Dp0r. However, this equation is not in conservation form, and numer-

ical experiments have shown that this equation does not yield conservation of mass in each layer. The
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purpose of the present subsection is to outline an alternate method that yields exact conservation of mass in

each layer, up to roundoff error.

The main idea of this method is to use the mass equation (2) in the unsplit system and enforce a kind of

consistency between (2) and the barotropic mass equation (6). Various versions of this strategy have also

been used by other investigators, as described below. The purpose of the present subsection is to give one
formulation and exposition of this approach and to contribute to a complete description of the methods

that are used in the numerical computations described in Section 5.

A reason for seeking exact conservation is the following. In the governing Eqs. (1)–(3) considered in

the present paper, it is assumed for simplicity that there is no transfer of mass between layers. How-

ever, a realistic isopycnic model would allow for such transfers. Vertical diffusion of heat and/or salt

can cause movement of surfaces of constant density (e.g. [4]), so an observer located on such a surface

would witness fluid parcels crossing that surface. If density (or a related quantity) is used as the vertical

coordinate, then the vertical diffusion of heat and/or salt is manifested by a transport of mass between
layers. Now suppose that a numerical algorithm allows spurious transports of mass between layers in

situations where the governing equations do not admit physical transports. If such an algorithm is then

applied to situations where physical transports can take place, the computed results will contain a com-

bination of physical transports and spurious numerical effects. This process can compromise the accu-

racy of simulations in which thermodynamic effects are important, such as long-term climate

simulations.

The mass equation (2) in the unsplit system is in conservation form, and exact conservation of mass in

each layer (up to roundoff error) would be obtained by using this equation instead of the baroclinic equa-
tion (7). However, the quantity Dpr in (2) is the total layer thickness, and it fully contains the effects of

rapidly moving external gravity waves. If this equation is solved with a value of Dt that is appropriate for
resolving the slow motions in the system, then there is a danger of computational instability. This pros-

pect is the reason for (approximately) splitting the fast and slow motions into separate subproblems.

In order to investigate this issue, first consider a two-layer fluid for which the flow is a small perturbation

of a stationary state having a level free surface, a level interface between layers, and a level bottom. This is

the same situation considered in the linearized stability analysis in [10]. Let D~pr denote the equilibrium

thickness of layer r (in pressure units) for r = 1,2. Also let Dpr and Dp0r denote the perturbations in total
thickness and baroclinic thickness, respectively, of layer r. In this notation, the pressure splitting defined

in Section 2.2 is D~pr þ Dpr ¼ ð1þ gÞðD~pr þ Dp0rÞ; if the product of the small quantities g and Dp0r is ne-

glected, the result is the linearized splitting Dpr ¼ Dp0r þ gD~pr. In this same notation, the layer thickness

equation (2) can be written in the linearized form
o

ot
Dprð Þ þ D~prr � ur ¼ 0: ð18Þ
When the linearized pressure splitting is inserted into (18), along with the relation ur ¼ �uþ u0r, the result is
o

ot
Dp0r
� �

þ D~prr � u0r þ D~pr
og
ot

þr � �u
� �

¼ 0: ð19Þ
The quantities Dp0r and g approximately represent the separation of the mass field into slowly varying and

rapidly varying quantities, respectively, so Eq. (19) displays explicitly the multiple time scales contained in

(18).

However, Eq. (18) would not be used in isolation, but instead would be used here as part of a coupled
barotropic–baroclinic splitting. In the present linearized setting, the barotropic mass equation (6) is
ogþr � �u ¼ 0; ð20Þ

ot
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when (20) is inserted into (19), the result is
o

ot
Dp0r
� �

þ D~prr � u0r ¼ 0; ð21Þ
which is the linearization of the baroclinic mass equation (7). Using the total mass equations (18) and (19)

in conjunction with the barotropic mass equation (20) is thus equivalent to using the baroclinic mass equa-

tion (21) with the barotropic equation (20).

The latter pairing, of (20) and (21), was used in the linearized stability analysis of the two-level method in

[10], and the conclusion of that analysis was that the algorithm is stable in the linear case. The preceding

discussion suggests that if Eq. (2) for total thickness Dpr (not the baroclinic thickness Dp0r) is used in the
barotropic–baroclinic splitting, and if the results from the barotropic mass equation (6) are incorporated

into the implementation of (2) in some appropriate manner, then it might be possible to obtain an algo-

rithm that behaves stably. The question is how to do this.

The approach used here is to adjust the lateral mass fluxes in individual layers so that the vertical sum of

these fluxes equals the flux used for the barotropic mass equation (6), at each edge of each mass cell. These

adjustments maintain conservation form, so the total mass in each layer is conserved. The idea of flux

adjustment is implicit in a method of Hallberg [8]; during a discussion of a split-explicit time-stepping meth-

od, Hallberg mentions briefly that he modifies the mass equation in each layer so that the barotropic veloc-
ity equals the mass-weighted vertical average of the advective velocities that are used to advance the layer

thicknesses. Multiplication by bottom pressure yields a statement about mass fluxes. Hallberg states that

this modification to the layer thickness equation filters the fast external gravity waves from that equation.

Related ideas involving flux adjustment have recently been developed by Mats Bentsen (personal commu-

nication) and John Dukowicz (personal communication and [5]), and their formulations and experiences

will be reported elsewhere.

In the version described below, the flux adjustment is done in an upwind manner in order to preserve

nonnegative layer thicknesses, and the concept of available mass described in Section 3.2 is used for the
sake of implementation with variable bottom topography. Numerous numerical experiments with zero

explicit viscosity over long time intervals suggest numerical stability of this scheme. In addition, these

experiments indicate that the mass in each layer is conserved exactly, up to roundoff error.

With the two-level time-stepping method described in [10], the layer thickness is updated after the baro-

tropic variables are predicted. When the barotropic equations are mentioned in the following discussion,

the results from the prediction step can be assumed. Once the updated values of layer thicknesses are com-

puted and adjusted, they are used immediately to compute forcing terms at the new time tn + 1. With the

two-level scheme the barotropic variables are later corrected, and afterward the flux adjustment mentioned
in Eq. (29) is applied again, so as to ensure consistency between the final values of layer mass variables and

the barotropic mass variable.

Suppose that Eq. (2), o(Dpr)/ot + $ Æ (urDpr) = 0, is approximated in a given mass cell with a conservative

scheme of the form
Dpnþ1
r ¼ Dpnr þ

Dt
Dx

F x�
r � F xþ

r

� �
þ Dt
Dy

F y�
r � F yþ

r

� �
: ð22Þ
Here, F x�
r is a value of mass flux (with units of velocity times pressure) at the edge of the cell corresponding

to minimal x, F xþ
r is a flux at the edge corresponding to maximal x, and F y�

r and F yþ
r are analogous quan-

tities in the y-direction. Now sum (22) over all layers (1 6 r 6 R), and observe that the sum of Dpr over all
layers is equal to the bottom pressure pb ¼ p0b þ p0bg, to obtain
p0bg
nþ1 ¼ p0bg

n þ Dt
Dx

XR
r¼1

F x�
r �

XR
r¼1

F xþ
r

" #
þ Dt
Dy

XR
r¼1

F y�
r �

XR
r¼1

F yþ
r

" #
: ð23Þ
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The bottom pressure perturbation p0bg
nþ1 can also be computed by using the barotropic mass equation

(6), oðp0bgÞ=ot þr � ðp0b�uÞ ¼ 0. Suppose that this equation is solved explicitly with time increment

D�t ¼ Dt=N , where N is the number of barotropic substeps of the baroclinic time interval [tn,tn + 1]. The algo-

rithm at each substep can be written in the form
p0bg
n;mþ1 ¼ p0bg

n;m þ D�t
Dx

ðHx�Þm � ðHxþÞm½ � þ D�t
Dy

ðHy�Þm � ðHyþÞm½ �; ð24Þ
where p0bg
n;0 ¼ p0bg

n; p0bg
n;N ¼ p0bg

nþ1; and (Hx±)m and (Hy±)m are values of p0b�u and p0b�v, respectively, at the
appropriate cell edges. Summation of (24) over all barotropic substeps yields
p0bg
nþ1 ¼ p0bg

n þ Dt
Dx

1

N

XN�1

m¼0

ðHx�Þm � 1

N

XN�1

m¼0

ðHxþÞm
" #

þ Dt
Dy

1

N

XN�1

m¼0

ðHy�Þm � 1

N

XN�1

m¼0

ðHyþÞm
" #

; ð25Þ
since D�t ¼ Dt=N .
Eqs. (23) and (25) provide two independent methods for computing the perturbation p0bg in bottom pres-

sure (or equivalently, the bottom pressure pb). These two methods give consistent results ifPR
r¼1F r ¼ 1

N

PN�1

m¼0ðHÞm at each cell edge, i.e., if the vertical sum of the layer fluxes equals the time average

of the barotropic flux at each edge. However, in general this is not exactly the case, due to different numer-

ical methods being used in the barotropic and baroclinic subsystems.

One method for enforcing consistency is the following. At a given cell edge e (where e = x�, x+, y�, or

y+) define the flux deficit
De ¼ 1

N

XN�1

m¼0

ðHeÞm �
XR
r¼1

F e
r ð26Þ
and then apportion this deficit over all of the layers, in some manner. Here, the deficit is distributed pro-

portionately in a mass-weighted, upwind fashion. Define Dpe;upwindr to be the available mass density in layer r

at edge e in the upwind direction, where ‘‘upwind’’ is defined by the sign of De, ‘‘available mass’’ is defined
in Section 3.2, and values of Dpr are taken from the output from the conservative scheme (22). If De > 0 the

upwind direction is on the negative side of edge e, and if De < 0 the upwind direction is on the positive side

of edge e. Then let pe;upwindb ¼
PR

r¼1Dp
e;upwind
r ; according to the definition of available mass, pe;upwindb is

approximately equal to p0b at edge e. Now define the flux adjustments
Ae
r ¼

Dpe;upwindr

pe;upwindb

 !
De ð27Þ
and use these adjustments to modify the scheme (22). More explicitly, the initial application of (22) yields
Dp�r ¼ Dpnr þ
Dt
Dx

F x�
r � F xþ

r

� �
þ Dt
Dy

F y�
r � F yþ

r

� �
; ð28Þ
values of Dp�r are used to define the quantities Dpe;upwindr and thus the adjustments Ae
r , and the adjustments

are then applied to give
Dpnþ1
r ¼ Dp�r þ

Dt
Dx

Ax�
r � Axþ

r

� �
þ Dt
Dy

Ay�
r � Ayþ

r

� �
: ð29Þ
Combining (28) and (29) yields
Dpnþ1
r ¼ Dpnr þ

Dt
Dx

ðF x�
r þ Ax�

r Þ � ðF xþ
r þ Axþ

r Þ
� �

þ Dt
Dy

ðF y�
r þ Ay�

r Þ � ðF yþ
r þ Ayþ

r Þ
� �

: ð30Þ
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Now sum (30) over all layers. At each edge e, the vertical sum of the adjusted fluxes is
XR
r¼1

ðF e
r þ Ae

rÞ ¼
XR
r¼1

F e
r þ De

XR
r¼1

Dpe;upwindr

pe;upwindb

 !
¼ 1

N

XN�1

m¼0

ðHeÞm: ð31Þ
With the scheme (30), the vertical sum of the lateral mass fluxes over all layers has thus been adjusted to be

equal to the time average of the barotropic flux. The layer equations and the barotropic mass equation then

give consistent values of bottom pressure, as desired.

In the preceding discussion, the concept of available mass is used to apportion the flux deficit among the

various layers, for the following reason. It is possible for a layer r to abut steep bottom topography, at some
u-point, and for its upper boundary to lie below the stairstep representation of the topography at that

u-point. In that case, the flux in layer r across that u-point should be zero, even after the flux deficit is dis-

tributed across various layers. If the available mass is used to determine this distribution, then the zero-flux

condition is satisfied, but if total layer thickness Dpr is used then the zero-flux condition could be violated.

Finally, we point out that nonnegative layer thicknesses are preserved by the process of flux adjustment

described above. The flux deficit (26) has units of pressure times velocity. Assume that this deficit is small, in

the sense jDej � ðp0bÞ
eU , where ðp0bÞ

e
is the value of p0b at edge e, and U is an upper bound on the values of

|ur| and |vr|. Assume that U satisfies a Courant–Friedrichs–Lewy condition of the form UDt/Dx 6 c and
UDt/Dy 6 c for some constant c that is on the order of 1. In the following, the quantity DprDxDy will be

referred to as the ‘‘mass’’ in a given grid cell, for convenience, even though Dpr is actually the weight

per unit horizontal area in layer r. For simplicity, also assume uniform grid spacings in x and y.

In the adjustment step (29), consider the contribution to the total mass in a cell due to the flux adjust-

ment at the edge corresponding to minimal x. The effects of the other edges can be described similarly. The

magnitude of the change in the total mass DprDxDy in the cell due to this edge, over one time step, is
jDtDyAx�
r j ¼ DtDy

Dpe;upwindr

pe;upwindb

 !
jDej � DtDyDpe;upwindr

jDej
ðp0bÞ

e � DtDyDpe;upwindr U :
(Here, Dpe;upwindr > 0 is assumed.) This change represents a loss of mass in the cell in the upwind direction.

The available mass in that cell, prior to the adjustment step, is Dpe;upwindr DxDy. The preceding relations can

be re-written in the form
jDtDyAx�
r j � UDt

Dx
Dpe;upwindr DxDy
� �

6 c Dpe;upwindr DxDy
� �

;

where c � 1. The amount of mass that is transported from the upwind cell, in one adjustment step, is thus
far less than the available mass that resides in that cell prior to the adjustment step, provided Dpe;upwindr > 0.

If Dpe;upwindr ¼ 0, then no mass is transported across this edge. It then follows that if a mass cell has non-

negative thickness prior to the adjustment step, then it also has nonnegative thickness after that step.
4. Rossby waves in a two-layer fluid

The goal of the present section is to develop a test problem, involving Rossby waves, which can be used
to check the accuracy of time-stepping methods. Rossby waves are slowly moving waves for which the

underlying restoring mechanism is based on vorticity instead of gravity [13], and their motion is fundamen-

tal to the development of large-scale circulation systems [7]. The existence of Rossby waves depends on the

variation of the Coriolis parameter with respect to latitude and/or variations in bottom topography. Here

we assume variations with respect to latitude, and we consider a two-layer fluid in order to test time-

stepping methods as applied to the barotropic–baroclinic splitting for multi-layer models. The following
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analysis yields semi-analytical solutions for which the time evolution is known essentially exactly. Each of

these solutions is either a pure internal mode or a pure external mode, and the separation into modes makes

it possible to test the baroclinic and barotropic subsystems independently.

In Section 2.3 of [10] the two-level method was applied to a much simpler test problem involving the lin-

earized shallow water equations for a single-layer fluid. In that problem the Coriolis parameter was assumed
constant, and Fourier transforms in space yielded a system of ordinary differential equations that could be

used to test various time-stepping methods. Compared to the leapfrog method with Asselin filter and two

other two-level methods, the present two-level method yielded less phase error and no amplitude error. Be-

cause of the assumption of a constant Coriolis parameter, that test problem was limited to gravity waves.

For the present analysis, assume that the flow is a small perturbation of a static state having a level

free surface, a level interface between layers, and a level bottom. Let D~pr denote the equilibrium thick-

ness of layer r for r = 1,2; Dpr denote the perturbation in thickness of layer r; and Mr denote the

perturbation in Montgomery potential. The governing equations (1)–(3) can then be written in the
linearized form
our
ot

� fvr ¼ � oMr

ox
;

ovr
ot

þ fur ¼ � oMr

oy
;

o

ot
Dprð Þ þ D~pr

our
ox

þ ovr
oy

� �
¼ 0

ð32Þ
for r = 1,2, with the jump condition
M1 �M2 ¼ p1ða1 � a2Þ: ð33Þ

Here, p1 denotes the perturbation in pressure at the bottom of layer 1. For purposes of the present analysis,

assume that the spatial domain is defined by �1 < x < 1 and 0 < y < L, with solid walls located at the

boundaries y = 0 and y = L. Also assume that the Coriolis parameter f is represented by the linear beta-
plane approximation f ðyÞ ¼ f0 þ bðy � L

2
Þ, where b is a positive constant. Here, x and y are regarded as

eastward and northward coordinates, respectively.

In situations where f varies with y, it is not possible to develop a test problem that involves a Fourier

transform with respect to y. Instead, we discretize the present problem with respect to x and y, leaving t

continuous, and then apply Fourier transforms with respect to x and t. The resulting system involves a fi-

nite amount of information in the y-direction, and this yields a tractable problem for constructing solu-

tions. For fixed wavenumber in x, this problem is a matrix eigenvalue problem that can be solved

numerically. Up to the numerical accuracy in computing eigenvalues and eigenvectors, the analysis yields
exact evolution in t for special modal solutions. These can be compared to solutions that are obtained with

the same spatial discretization but with numerical time-stepping methods.

Analytical descriptions of Rossby waves in [7,13,14] entail various approximations in the formulas for

frequencies and spatial dependences of these waves. If such results are compared with the results obtained

from a numerical model, then the discrepancies between the two results could be due to errors in both the

analytical and numerical solutions. The purpose of the present analysis is to produce comparisons in which,

for practical purposes, the only errors are due to numerical time-stepping schemes.

Before proceeding further, it is useful to eliminate Mr from the system (32), so that the only unknowns
for layer r are ur, vr, and Dpr. Let ~Mr denote the Montgomery potential in layer r at the equilibrium state; let
~pr and ~zr denote the pressure and elevation, respectively, at the bottom of layer r at the equilibrium state;

and let pr and zr denote perturbations in those quantities. The Montgomery potential in layer r is then
~Mr ¼ ar~pr þ g~zr at the equilibrium state and ~Mr þMr ¼ arð~pr þ prÞ þ gð~zr þ zrÞ at a general state. There-
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fore, Mr = arpr + g zr for r = 1,2. However, the bottom of layer 2 is always located at z ¼ ~z2, so the perbur-

bation z2 is always zero. Thus M2 = a2p2 = a2(Dp1 + Dp2). The jump condition (33) then implies

M1 = M2 + Dp1(a1 � a2) = a1Dp1 + a2Dp2. Therefore,
Mr ¼ arDp1 þ a2Dp2 ð34Þ
for r = 1,2. The relation (34) can then be used to eliminate Mr from the system (32). The coupling between

the two layers is expressed by the presence of Dp1 and Dp2 in both M1 and M2.

Now discretize with respect to x and y, with uniform grid spacings Dx and Dy, respectively, and leave t

continuous. Denote the grid points in y by y0 = 0, y1 = Dy, . . .,yN = NDy = L. Approximate the spatial

derivatives in the system (32) with centered second-order derivatives on a C-grid. The mass points then have

the form (xm,yj � 1/2) for j = 1, . . .,N; the u-points have the form (xm � 1/2,yj � 1/2) for j = 1, . . .,N; and the

interior v-points have the form (xm,yj) for j = 1, . . ., N � 1. The Coriolis terms are discretized in space with
the energy-conserving method of Sadourny [15], as described in Section 3.1.

The Fourier transform with respect to x and t is equivalent to considering solutions of the form
urðx; yj�1=2; tÞ ¼ ûðrÞj�1=2e
ikx�ixt; 1 6 j 6 N ;

vrðx; yj; tÞ ¼ v̂ðrÞj eikx�ixt; 1 6 j 6 N � 1;

Dprðx; yj�1=2; tÞ ¼ Dp̂ðrÞj�1=2e
ikx�ixt; 1 6 j 6 N

ð35Þ
with the solid-wall boundary conditions v̂ðrÞ0 ¼ v̂ðrÞN ¼ 0. Represent the effect of differences with respect to x

by
iK
Dx

¼ 1

Dx
eikDx=2 � e�ikDx=2
� �

;

so that K ¼ 2 sinðkDx=2Þ, and represent the effect of averaging with respect to x by
A ¼ 1

2
eikDx=2 þ e�ikDx=2
� �

¼ cosðkDx=2Þ:
When the forms (35) are inserted into the system (32)–(34), the result is
ð�ixÞûðrÞj�1=2 ¼
1

2
A fj�1v̂

ðrÞ
j�1 þ fjv̂

ðrÞ
j

h i
� iK
Dx

arDp̂
ð1Þ
j�1=2 þ a2Dp̂

ð2Þ
j�1=2

h i
; ð36Þ

ð�ixÞv̂ðrÞj ¼ � 1

2
Af j ûðrÞj�1=2 þ ûðrÞjþ1=2

h i
� ar
Dy

Dp̂ð1Þjþ1=2 � Dp̂ð1Þj�1=2

h i
� a2
Dy

Dp̂ð2Þjþ1=2 � Dp̂ð2Þj�1=2

h i
; ð37Þ

ð�ixÞDp̂ðrÞj�1=2 ¼ �D~pr
iK
Dx

� �
ûðrÞj�1=2 þ

1

Dy
v̂ðrÞj � v̂ðrÞj�1

	 
� �
; ð38Þ
where fj = f(yj).

Next represent the system (36)–(38) as a matrix eigenvalue problem for fixed k, with eigenvalue �ix. Let
U ðrÞ ¼ ûðrÞ1=2; û
ðrÞ
3=2; . . . ; û

ðrÞ
N�1=2

	 
T
;

V ðrÞ ¼ v̂ðrÞ1 ; v̂ðrÞ2 ; . . . ; v̂ðrÞN�1

	 
T
;

P ðrÞ ¼ Dp̂ðrÞ1=2;Dp̂
ðrÞ
3=2; . . . ;Dp̂

ðrÞ
N�1=2

	 
T
:
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Eq. (36) yields
ð�ixÞU ðrÞ ¼ 1

2
AF 1V ðrÞ � iK

Dx

� �
arP ð1Þ � iK

Dx

� �
a2P ð2Þ; ð39Þ
where F1 is the N · (N � 1) matrix defined by
F 1 ¼

f1
f1 f2

f2 f3

. .
. . .

.

fN�2 fN�1

fN�1

0
BBBBBBBBB@

1
CCCCCCCCCA
:

Eq. (37) yields
ð�ixÞV ðrÞ ¼ � 1

2
AF 2U ðrÞ þ ar

Dy

� �
D1P ð1Þ þ a2

Dy

� �
D1P ð2Þ; ð40Þ
where F2 is the transpose of F1, and D1 is the (N � 1) · N matrix defined by
D1 ¼

1 �1

1 �1

. .
. . .

.

1 �1

0
BBBB@

1
CCCCA:
Finally, Eq. (38) yields
ð�ixÞP ðrÞ ¼ �D~pr
iK
Dx

� �
U ðrÞ þ D~pr

Dy

� �
D2V ðrÞ; ð41Þ
where D2 ¼ �DT
1 .

Now let q denote the (6N � 2) · 1 column vector whose components consist of the components of U(1),

V(1), P(1), U(2), V(2), and P(2), in that order. Eqs. (39)–(41) imply
ð�ixÞq ¼ Gq; ð42Þ
where G is the (6N � 2) · (6N � 2) matrix given in block form as
G ¼

0 1
2
AF 1 � iK

Dx

� �
a1I 0 0 � iK

Dx

� �
a2I

� 1
2
AF 2 0 a1

Dy

	 

D1 0 0 a2

Dy

	 

D1

� iK
Dx

� �
D~p1I

D~p1
Dy

	 

D2 0 0 0 0

0 0 � iK
Dx

� �
a2I 0 1

2
AF 1 � iK

Dx

� �
a2I

0 0 a2
Dy

	 

D1 � 1

2
AF 2 0 a2

Dy

	 

D1

0 0 0 � iK
Dx

� �
D~p2I

D~p2
Dy

	 

D2 0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: ð43Þ
Here, I denotes theN · N identity matrix. The matrixG is a function of the wavenumber k in the x-direction.

For fixed k, Eqs. (42) and (43) define an eigenvalue problem for which the eigenvalue�ix yields the angular

frequency x in special solutions of the form (35), and various portions of the eigenvector q give dependences
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with respect to y of u1, v1, Dp1, u2, v2, and Dp2 in those special solutions. For specific values of model param-

eters, this eigenvalue problem can be solved numerically to yield initial data for testing time-steppingmethods.

For example, consider the case where Dx = Dy = 10km, the width of the channel is 320 km, the Coriolis

parameter defines a b-plane centered at 45� N, and the upper and lower layers have equilibrium thicknesses

of 1000 and 3000 m and specific volumes of 0.975 · 10�3 and 0.972 · 10�3 m3/kg, respectively. Now let
kDx = p/16 and solve the eigenvalue problem (42) and (43) with these choices of parameters. The resulting

distribution of values of x is indicated in Fig. 2. The vertical axis shows values of |x| on a logarithmic scale.

The horizontal axis indicates the mode number, which is simply a matter of the ordering of the eigenvalue–

eigenvector pairs given by the software that is used to compute these quantities.

In this figure, the values of |x| lie in three distinct clusters. If the Coriolis parameter is replaced by the

constant value associated with latitude 45� N, then the lowermost (right) cluster disappears from the given

graph frame, and an inspection of numerical output indicates that the values of |x| for this cluster become

essentially zero. On the other hand, the values of |x| in the other two clusters are essentially unchanged. The
modes in the lowermost cluster in Fig. 2 are thus Rossby modes, as the existence of such modes depends on

the variation of the Coriolis parameter.

The remaining modes are gravity waves. In the case of the uppermost cluster in Fig. 2, an inspection of the

spatial variations in thesemodes (not shown here) reveals that the two layers thicken or thin by approximately

the same proportion, at each (x,y, t). On the other hand, in the case of the second cluster the perturbations in

layer thickness always have opposite signs and nearly cancel, so that the free surface remains nearly level. The

modes in the first cluster are thus external waves, and the modes in the second cluster are internal waves. In

addition, both the external and internal clusters include Poincaré modes, for which the dependences with
respect to y are approximately sinusoidal, and Kelvin modes, which decay exponentially with distance from
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Fig. 2. Values of |x| for modes in a two-layer fluid in a channel. In this example, kDx = p/16; Dx = Dy = 10 km; the width of the

channel is 320 km; the equilibrium thicknesses of the upper and lower layers are 1000 and 3000 m, respectively; the specific volumes of

the upper and lower layers are 0.975 · 10�3 and 0.972 · 10�3 m3/kg, respectively; and the Coriolis term defines a b-plane centered at

45� N. The uppermost (left) cluster of points corresponds to external gravity (Poincaré and Kelvin) modes, the second cluster

corresponds to internal gravity modes, and the third cluster corresponds to external and internal Rossby modes.
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one or the other of the solid boundaries. This behavior is analogous to descriptions given by Pedlosky [13,14]

of channel modes that are solutions of the linearized shallow water equations for a single-layer fluid.

Next consider the structure of the Rossby modes. Fig. 3 shows dispersion relations for each of these

modes. In this figure, the horizontal axis represents the dimensionless wavenumber kDx for 0 6 kDx 6 p,
and the vertical axis represents corresponding values of the angular frequency x. To produce this plot,
the eigenvalue problem (42) and (43) was solved for values of kDx varying from 0 to p in increments of

p/400. The values of x corresponding to the Rossby modes were then sorted and plotted. An inspection

of spatial dependences shows that both external and internal Rossby modes are represented here. The

dependences with respect to y are nearly sinusoidal, and for a given y-dependence the corresponding exter-

nal mode has a higher frequency than the corresponding internal mode.

Fig. 3 shows the strongly dispersive nature of Rossby waves. The velocity of energy propagation is the

group velocity dx/dk, and for physical Rossby modes this velocity is negative for relatively small values of

|k|, whereas for relatively large |k| the group velocity is positive. In other words, long Rossby waves prop-
agate energy westward and short Rossby waves propagate energy eastward. The asymmetry of Rossby

waves helps to account for the east–west asymmetry in ocean circulation patterns, in which narrow bound-

ary currents are found along western boundaries of ocean basins but not along eastern boundaries (Gill [7]).

The numerical Rossby modes plotted in Fig. 3 generally show the same behavior as physical Rossby

modes. However, some of the lower-frequency modes show a reversal in the sign of x, which then implies

a reversal in the sign of the group velocity. Plots of the spatial variations in these modes (not shown here)

indicate that these modes are highly oscillatory in y, to the point of being nearly grid-scale, so for smooth

solutions these modes would be relatively insignificant. In addition, further experiments with varying chan-
nel widths suggest that the ratio of maximum |x| for these modes to the maximum |x| over all modes
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Fig. 3. Dispersion relations for Rossby waves in a two-layer fluid in a channel. The horizontal axis represents the dimensionless

wavenumber kDx, and the vertical axis represents the angular frequency x. The physical parameters are the same as in Fig. 2, except

that the values of kDx are sampled from the interval [0,p] in increments of p/400. Each curve represents the dispersion relation for one

Rossby mode in the semi-discrete problem obtained by discretizing in space on a C-grid and leaving t continuous. The Sadourny

energy-conserving method is used to discretize the Coriolis terms in space. Both external and internal Rossby modes are shown here.
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Fig. 4. First external Rossby mode for a fixed value of time t. The physical parameters are the same as in Fig. 2. The upper graph is a

contour plot of the elevation of the free surface at the top of the upper layer, and the lower graph is a contour plot of the elevation of the

interface between the two layers. Solid curves indicate positive elevation relative to equilibrium, and dashed curves indicate negative

elevation relative to equilibrium. With an external mode, all fluid layers thicken or thin by approximately the same proportion, so in the

present case the perturbations in the elevations of the free surface and interface always have the same sign. The velocity field (not shown

here) is everywhere tangent to curves of constant elevation, due to the geostrophic balance that is found in Rossby waves.
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decreases as the width of the channel increases, so that the anomalous behavior is unlikely to be significant

in basin-scale simulations. As noted earlier, in this analysis the Coriolis terms are discretized in (x,y) on a

C-grid by using the energy-conserving method of Sadourny [15]. Further experiments (not shown here)

indicate that if the Coriolis terms are represented with simple four-point averages, then the reversal of sign
does not occur, and x < 0 for all numerical Rossby modes.

The spatial structures of some Rossby modes are shown in Figs. 4–6. Here, the values of physical

parameters are the same as those used to obtain Fig. 2. The spatial structures of the modes in Figs.

4–6 were obtained from the formulas for Dp1 and Dp2 that are given in (35), with t = 0 and values

of Dp̂ðrÞj�1=2 taken from the appropriate portions of the corresponding eigenvector of (42) and (43). In

each figure the upper graph is a contour plot of the elevation of the free surface at the top of the fluid,

and the lower graph is a contour plot of the elevation of the interface between the two layers. In each

figure the upper and lower figures use the same contour interval, but no particular scale is used here
due to the linearity of the solution. Solid contours indicate positive perturbations in elevation, and

dashed contours indicate negative perturbations.

Fig. 4 shows the first external Rossby mode. Here, ‘‘first’’ refers to the fact that the dependence with y is

the most slowly varying of all the external Rossby modes. The figure illustrates how, at each (x,y, t), the

interface and the free surface are either both perturbed upward or both perturbed downward. The

movement of the interface is due to variations in the thickness of the lower layer, whereas the movement

of the free surface is due to thickening or thinning of both layers, so the perturbations in the free surface are
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Fig. 5. Second external Rossby mode.
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greater than those of the interface. Fig. 5 shows the second external Rossby mode, and Fig. 6 shows the first

internal Rossby mode.

The velocity fields for the Rossby modes are not plotted here, but a summary of their properties is the

following. In each of the Rossby modes the velocity field is everywhere tangent to the contours of constant
elevation. For such modes the time derivatives (equivalently, frequencies) are sufficiently small that the

dominant balance in the momentum equation is between the pressure forcing and the Coriolis term, which

is orthogonal to velocity. In the case of external modes the velocity is essentially independent of depth, and

in the case of internal modes the velocities in the two layers have opposite directions and have a mass-

weighted vertical average that is essentially zero.

For a pure mode, such as those shown in Figs. 4–6, the pattern of elevations and velocities translates in

the negative direction with phase velocity x/k < 0. Superpositions of different modes introduce the effects of

group velocity that are mentioned above.
For any Rossby mode, as computed from the preceding analysis, the values of layer thicknesses and

velocity components for fixed t can be used as initial data for a code that solves the governing equations

numerically. Evolution in t that is obtained with the model, at fixed (x,y), can then be compared with

the exact evolution that is provided by the above analysis. The results of some comparisons are described

in Section 5.1.
5. Numerical computations

This section describes the results of some numerical computations involving the two-level time-stepping

scheme and related ideas discussed in this paper. All of the computations involve fluids with two layers. The



0 1 2 3 4 5 6

x 10
5

0.5

1

1.5

2

2.5

3
x 10

5 Elevation of free surface

y

0 1 2 3 4 5 6

x 10
5

0.5

1

1.5

2

2.5

3
x 10

5 Elevation of interface

x

y

Fig. 6. First internal Rossby mode. With an internal mode, the perturbations in the thicknesses of the two layers are of opposite sign

and nearly equal magnitude, so the free surface remains nearly level.

R.L. Higdon / Journal of Computational Physics 206 (2005) 463–504 487
first set of computations is based on the linear test problem involving Rossby waves that was discussed in

Section 4, and it provides a basic test of time-stepping methods. The second set of computations involves

variable bottom topography, and in this case the layer thicknesses tend to zero at both the top and bottom

of the fluid domain. The third test is a double-gyre experiment in which the flow meanders and forms ed-
dies, and when the explicit horizontal viscosity is set to zero the solution does not display any numerical

grid noise. The lower layer outcrops to the surface in this case as well.

The discussion in this section includes comparisons with a code that uses the leapfrog method for the

baroclinic momentum equations but otherwise uses the same ideas as in the code that uses the two-level

time-stepping method. In the linear test problem of Section 5.1, the leapfrog version displays substantial

effects of the sawtooth computational mode that is allowed by that scheme, whereas the two-level ver-

sion does not show such effects. In the nonlinear double-gyre experiment of Section 5.3 the leapfrog

version crashed, due to an instability that developed near locations where the layer thickness tends
to zero.
5.1. Rossby waves

The analysis in Section 4 yields special solutions for which the space and time dependences are known

essentially exactly. Values of such solutions at fixed time provide initial data that can then be used in a code

that solves the governing equations numerically. In the following, the exact and numerical solutions will be

compared as functions of t, at a fixed (x,y) that lies in the middle of the channel. Each of the special solu-
tions is either a pure internal mode or a pure external mode, so these solutions provide a means for testing
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the barotropic and baroclinic subsystems independently. One effect of the following discussion is to dem-

onstrate a clear choice between two possible methods for solving the barotropic equations.

The physical parameters used here are the same as those used for Figs. 2 and 4–6 in Section 4, except that

solutions are computed both for kDx = p/16 and for kDx = p/8. In the first case there are 32 grid intervals

per wavelength in the x (along-channel) direction, and in the second case there are 16 grid intervals per
wavelength in the x-direction. Solutions are computed on a spatial domain that extends for 64 mass cells

in the x-direction and 32 mass cells in the y (cross-channel) direction. Periodic boundary conditions are

used at the boundaries corresponding to maximal and minimal x, in keeping with the periodic nature of

the special solutions (35). In these computations the horizontal viscosity AH in the momentum equation

(1) is set to zero. Also, Section 4.4 of [10] describes methods for implementing shear stress between layers

and friction at the bottom of the fluid domain, but for the present computations these frictional effects are

also set to zero. The time increment used in the baroclinic subsystem is Dt = 1200 s, except for the test

involving the leapfrog method that is described in Section 5.1.2. The barotropic equations are solved with
the explicit method described in Section 3.3, except for one case noted in Section 5.1.3 where these equa-

tions are solved implicitly. In the case of the explicit solution, the nominal barotropic time increment is 35 s;

to be more precise, the baroclinic Dt is divided by the nominal barotropic increment, and the result is

rounded to the next greatest integer to obtain the actual number of barotropic subintervals per baroclinic

time interval.

The solutions developed in Section 4 are based on a linearization of the governing equations. For the

present computations, the solutions are scaled so that the maximum amplitude of fluid velocity (not wave

velocity) is one centimeter per second, in order that the dynamics of the fluid are essentially linear. How-
ever, the full nonlinear model is used in these computations, not a simplified model specialized for the linear

case. In particular, the advective terms in the mass and momentum equations are implemented with the

multidimensional positive definite advection transport algorithm (MPDATA), which is described in [17].

This method employs an upwind step followed by antidiffusive corrections, and for the present computa-

tions two antidiffusive corrections are used in all cases.

5.1.1. First internal Rossby mode, computed with the two-level method

Fig. 7 shows the time dependence for the first internal Rossby mode. (Plots of interface and free-surface
elevations for this mode for fixed t are shown in Fig. 6 in Section 4.) The upper frame in Fig. 7 shows the

thickness of the upper layer, in meters, when kDx = p/16, i.e., when there are 32 grid intervals per wave-

length in the x-direction. The solid curve shows the solution obtained from the analysis in Section 4,

and the dashed curve shows the solution obtained numerically with the two-level code. There is a very close

agreement between these solutions. The lower frame in Fig. 7 shows the thickness of the upper layer when

kDx = p/8, i.e., when there are 16 grid intervals per wavelength in the x-direction. In this case some decay

can be seen in the solution.

In the analysis of the two-level time-stepping method given in [10], the method was shown to be essen-
tially nondissipative when the barotropic equations are solved exactly in t. In that analysis the Coriolis

parameter was assumed constant, unlike the present discussion. If the model parameters for the present

computation are applied to the analysis in [10], except for the variation in the Coriolis parameter, and if

kDx = p/8, then the maximum and minimum absolute values of the eigenvalues of the amplification matrix

are 1 and approximately 1–0.36 · 10�6, respectively. The variation of the solution in t is governed by the

powers of these eigenvalues, and for the value of Dt used here the time interval of 1000 days corresponds

to 72,000 baroclinic time steps. When the eigenvalues are raised to the power 72,000, the minimum absolute

value is approximately 0.975. If this result for constant Coriolis parameter is relevant to the present
computation, then the time-stepping scheme itself does not account for the damping seen in Fig. 7. For

the present computation the shear stress, bottom stress, and horizontal viscosity are all set to zero. The

remaining possible source of damping in the model is the dissipation that is inherent in the advection
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Fig. 7. First internal Rossby mode, as computed with a code that employs the two-level time-stepping method described in this paper.

Solutions are shown as functions of t at a fixed position in the middle of the channel. The upper frame show the thickness of the upper

layer, in meters, when there are 32 grid intervals per wavelength in the x-direction. The lower frame shows the thickness of the upper

layer when there are 16 grid intervals per wavelength in the x-direction. In each frame the solid curve is the exact solution obtained

from the analysis in Section 4, and the dashed curve is the solution obtained by solving the governing equations numerically. The time-

stepping method is essentially nondissipative, so the damping seen in the lower frame is due to the advection scheme (MPDATA) that

is used for the equations for mass and momentum. The time interval of 1000 days corresponds to 72,000 baroclinic time steps, for the

value of Dt used here.

R.L. Higdon / Journal of Computational Physics 206 (2005) 463–504 489
scheme (MPDATA) that is used for the equations of mass and momentum. The plots in Fig. 7 then indicate

the damping provided by that scheme.

An examination of the computed values of velocities for this example (not shown here) shows that the
magnitude of the baroclinic velocity u 0 is typically about one to two orders of magnitude larger than the

magnitude of the barotropic velocity �u. The barotropic–baroclinic splitting used here does not provide

an exact splitting of the external and internal modes, but the values of velocity do suggest that nearly all

of the energy is in the baroclinic system, in the present example. The present computation thus provides

a test of the time-stepping used in the baroclinic subsystem, in near isolation from what is done for the

barotropic subsystem.

Plots of the thickness of the lower layer (not shown here) indicate patterns that are very similar to those

shown in Fig. 7. In keeping with properties of internal waves, the perturbation in layer thickness for the
lower layer is very nearly the negative of the perturbation for the upper layer, so the sum of the thicknesses

of the two layers is nearly constant. This implies that the elevation of the free surface at the top of the fluid

is nearly constant, whereas the elevation of the interface between the layers varies more substantially.

5.1.2. First internal mode, computed with the leapfrog method

For the sake of comparison, the preceding problem was also solved with a version of the code that uses

the leapfrog method for the baroclinic momentum equations. In this case, the sequence of operations is the
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following: update baroclinic velocity, predict the barotropic solution, update the layer thicknesses, correct

the barotropic solution using time averages of old and new baroclinic mass variables, and compute final

values of forcing terms at the new time level. The two-time-level positive definite advection scheme for

the layer thicknesses is not replaced with a leapfrog version, in anticipation of using the same code in sit-

uations where layer thicknesses could tend to zero. However, for the case of the baroclinic momentum
equation, it was not clear how to implement a nonoscillatory advection scheme in the context of the leap-

frog method, so instead the nonlinear and Coriolis terms are combined into the form

ður � rÞur þ f u0
?
r ¼ rð1

2
jurj2Þ þ ðfr þ f Þu0?r þ fr�u?, where fr = ovr/ox � our/oy. This formula is used, for

example, by Bleck and Smith [3]. The result is then discretized with second-order centered differencing

and averaging on a C-grid. In particular, the Coriolis/vorticity terms are discretized with the energy-

conserving scheme of Sadourny [15].

The leapfrog method requires initial data at two consecutive time levels, so during the first time step the

baroclinic momentum equations are solved with a forward step that is implemented with the same subrou-
tine that is used for the prediction step in the two-level version of the code.

Because of the sawtooth computational mode that is allowed by the leapfrog scheme, an Asselin filter (e.g.

[6]) is applied at each time step. For a quantity /, this filter has the form �/
n
:¼ c/nþ1 þ ð1� 2cÞ/n þ c�/

n�1
,

where c is a positive constant, and �/ is a filtered version of/. This formula represents an adjustment to/n that

is performed immediately after /n + 1 is computed.

Fig. 8 shows the results obtained for the first internal mode with the leapfrog version of the code. In this

case the baroclinic time increment is Dt = 600 s instead of 1200 s, due to the more restrictive timestep lim-
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Fig. 8. First internal Rossby mode, when the leapfrog method is used for the baroclinic momentum equation. The parameters and

format are the same as for Fig. 7, except that the baroclinic Dt is cut in half. The noisy behavior at the beginning of the time interval is

due to the sawtooth computational mode that is allowed by the leapfrog method, and it is smoothed with an Asselin filter having

coefficients (0.05,0.90,0.05). The resulting loss of amplitude is greater than the loss shown in Fig. 7, for the time interval shown.
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Fig. 9. First external Rossby mode. The parameters and format are the same as for Fig. 7. The solid curve shows the exact solution,

and the dashed curve shows the solution obtained when an alternating-direction implicit method is used to solve the barotropic

equations.
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Fig. 10. First external Rossby mode, when the barotropic equations are solved with short substeps using the explicit forward–

backward method described in Section 3.3. The time interval of 1000 days corresponds to 2.52 · 106 barotropic steps.
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itation for the leapfrog method (see Section 2.2 of [10]). In the present computation c = 0.05, so the Asselin

filter represents a weighted average with coefficients (0.05,0.90,0.05). The noisy behavior at the beginning of

the time interval is due to the computational mode, which is excited by the forward step that is used during

the initialization for the leapfrog method. Such behavior has also been encountered in the initialization of

weather forecast models that use the leapfrog method (Rainer Bleck, personal communication). The Asselin
filter successfully eliminates the noise, but the subsequent solution displays a reduced amplitude. Over the

1000-day time interval shown in the figure, the loss of amplitude is more substantial than the decay shown

in Fig. 7. An additional computation (not plotted here) was performed with c = 0.125, so that the weight

coefficients in the Asselin filter are (0.125,0.75,0.125). With this stronger filter, the noise is removed more

quickly, but the amplitude of the smooth solution for large t is very similar to that shown in Fig. 8.

5.1.3. First external mode

Figs. 9 and 10 show some results obtained for the first external Rossby mode, with the two-level version
of the code. Plots of the elevations of the free surface and interface for this mode are given in Fig. 4 in Sec-

tion 4. In the case of Fig. 9, the barotropic equations are solved implicitly with the adaptation of the ADI

method of Bates [1] mentioned in [10] and in Section 3.3 of the present paper. In this case the time increment

for the barotropic subsystem is Dt = 1200 s, which is the same as for the baroclinic equations. As indicated

by the figure, the computed solution is highly inaccurate. With the present Dt there are 72 baroclinic steps

per model day, so the problem is not due to under-resolution in t. Causes for the inaccuracy will not be

pursued here. On the other hand, a reasonable solution is obtained when the barotropic equations are

solved explicitly with short substeps, as indicated in Fig. 10. In this latter case the explicit forward–back-
ward method described in Section 3.3 is used, with 35 barotropic substeps per baroclinic step. The baro-

tropic time increment is then approximately 34.3 s. This explicit scheme is used in all of the

computations described below.

An examination of the velocities computed with the solution shown in Fig. 10 indicates that the baro-

tropic velocity is typically about three orders of magnitude larger than the baroclinic velocity. Practically all

of the energy is represented in the barotropic subsystem, so the present computation provides a test of time-

stepping methods for that subsystem.

Plots of the thickness of the lower layer (not shown here) indicate that the variations in the thicknesses of
the two layers are in phase. In addition, the equilibrium thicknesses of the upper and lower layers are 1000

and 3000 m, respectively, and the amplitude of the perturbation in the upper layer is about one-third the

perturbation in the lower layer. This illustrates how layers are thickened or thinned by about the same pro-

portion, in the case of external waves.

5.2. Upwelling and downwelling

In the computations described in the present subsection, the interface between the layers intersects slop-
ing bottom topography and the thickness of the lower layer tends to zero at such locations. Wind stress is

applied at the upper surface of the fluid, and as a consequence the fluid in the upper layer shifts laterally. On

a portion of the fluid domain, the lower layer wells upward to the surface, whereas in other locations the

upper layer thickens and extends downward. This process is a simple model of upwelling and downwelling

phenomena that are found in certain coastal regions.

In the analysis of bottom topography given in Section 4.5 of [10], the goal was to prevent false pressure

gradients when layer interfaces intersect the bottom. These procedures were then tested successfully in a

problem involving a straight, infinite channel with trapezoidal cross-sections. For some more recent com-
putations described below, this channel is bent into a circle so as to form an annular fluid domain. In this

configuration, fluid can flow obliquely to the edges of grid cells, and the fluid in a given layer can flow be-

tween adjacent cells having widely varying thicknesses. The concepts of available mass and available
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momentum described in Section 3.2 were then developed in response to this situation. On the other hand,

for the one-dimensional configuration tested in [10], the fluid velocities were essentially parallel to the

straight channel. Very little mass was exchanged between adjacent thick and thin cells, so the present dif-

ficulty did not arise in that simpler situation.
5.2.1. Straight channel

For completeness, we first repeat the test problem in [10] while using the revised methods for bottom

topography. In that configuration, the horizontal coordinates satisfy 0 6 x 6 1000 km, �1 < y < 1,

and the horizontal grid spacing is Dx = Dy = 10 km. Solid boundaries are imposed at x = 0 and x = 1000

by placing mass cells of zero depth on each side of the channel. The depth of the fluid is 500 m for

400 < x < 600, and elsewhere the bottom undergoes a linear transition to zero depth at the edges. The

system is forced by a constant wind stress that has magnitude 0.1 N/m2 and is directed in the positive y-

direction. The Coriolis parameter has a constant value corresponding to 45� N, i.e., f ¼
2X sin 45� _¼1:028� 10�4 s�1, where X is the angular rate of rotation of the earth. All aspects of the problem

are independent of y, so the solution is independent of y, and the infinite extent in y is simulated with peri-

odic boundary conditions. The timestep used for the baroclinic equations is 2400 s and the timestep used

for the explicit solution of the barotropic equations is 100 s.

The upper and lower layers have specific volumes 0.975 · 10�3 and 0.970 · 10�3 m3/kg, respectively. At

the initial time t = 0, the free surface is located at z = 0 and the interface between the layers is located at

z = �50 m. The interface intersects the sloping bottom topography on each side of the channel. Each layer

is assumed to exist at all horizontal locations, and at t = 0 the lower layer is assigned zero thickness in all
mass cells for which only the upper layer is active.

The horizontal viscosity AH is set to zero. However, the computation employs a nonzero bottom stress

and a nonzero shear stress between layers so that the computed solution converges to a steady state that can

be compared to an analytical steady state. The bottom stress is taken to be sbot = cDq2|u|u, where cD = 0.003

and q2 = 1/a2. Here, u represents a value of bottom velocity which is obtained by a mass-weighted vertical

average over a prescribed vertical range, which was taken to be 5 m for the present computations. Also, we

use a sign convention that a stress represents a force exerted by an upper region on a lower region. The

shear stress at the interface between the layers is represented as
sshear ¼
qAV

Dz
u1 � u2ð Þ; ð44Þ
where Dz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AV=f

p
is the Ekman thickness, the vertical viscosity is AV = 10�4 m2/s, and q = 1/a1. Shear

stress is often modeled by the relation s = qAVou/oz [13], but for a layered model the vertical increments

Dz can be highly irregular, and Taylor expansions show that finite difference approximations with irregular

values of Dz need not be consistent with the analytical limit. The above representation with constant Dz was
used in order to provide some kind of friction so that the solution converges to a steady state for purposes

of testing.

When the wind stress is applied at the upper surface, its magnitude decays linearly to zero over a pre-
scribed vertical distance which was taken to be one meter for the present computations. If the thickness

of the upper layer exceeds this distance, then the wind stress is applied entirely to the upper layer. However,

if the thickness of the upper layer is less than this threshold, then some of the wind stress is applied directly

to lower layers. This procedure prevents large forcing from being applied to arbitrarily thin layers. An anal-

ogous procedure is used for the bottom stress.

The system begins in a state of rest. Due to the action of the wind stress and Coriolis effect, the fluid in

the upper layer then shifts slowly in the positive x-direction. (Essentially, when the Coriolis parameter is

positive, as in the northern hemisphere, fluid shifts to the right when wind stress is applied.) At the left edge
of the channel (near x = 0) the interface moves upward along the sloping bottom topography; equivalently,
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some mass in layer 2 moves into cells which were initially massless. At the right edge of the channel (near

x = 1000) the interface moves downward along the bottom slope, i.e., some cells in layer 2 which initially

contain mass are drained and then have thicknesses that are essentially zero. As the fluid builds up on the

right side of the domain, a cross-channel pressure gradient is established which begins to balance the Cori-

olis effect, and as t ! 1 the system approaches a steady state. For sufficiently large t, the entire upper layer
has shifted to the right and is confined to a region near the right edge of the channel.

A steady-state analytical solution to this problem was derived in [10]. In regions where only one layer has

positive thickness, the wind stress at the upper boundary is balanced by bottom stress at the lower bound-

ary. The bottom stress depends on velocity, so this balance determines the velocity in the active layer. The

velocity in the inactive layer is assumed to be the same as in the active layer, in keeping with the action of

the shear stress as described in Section 3.1 of the present paper. The velocity, coupled with the geostrophic

balance between the Coriolis terms and pressure gradient, then determines the slope of the free surface. In

regions where both layers are active, the wind stress, shear stress, and bottom stress are all equal. This bal-
ance implies that the velocity in the lower layer is determined by the wind stress. The upper layer can slide

over the lower layer, so the velocity in the upper layer displays a jump discontinuity at locations where the

number of active layers changes. At locations where two layers are active, the free surface is steeper than

elsewhere, due to the larger velocity and the geostrophic balance.

In the present computation, the solution is essentially at a steady state by day 1200, and the solution at

that time is shown in Fig. 11. In the bottom frame in the figure, the y-component of the velocity in the upper
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Fig. 11. Upwelling and downwelling in a straight channel. The solution is shown at day 1200, when the system is essentially at a steady

state. All aspects of the problem are independent of the along-channel direction y, so the solution is also independent of y. In each

frame, each symbol (circle or · ) represents a value of the numerical solution at a single grid point. The top frame illustrates a cross-

section of the fluid domain for fixed y. The free surface is located at z � 0, the upper layer is confined to the triangular region in the

upper right, and the shaded region represents bottom topography. The middle frame shows the elevation of the free surface. The

bottom frame shows the along-channel velocity v in the upper layer. In that frame the solid horizontal lines for x > 680 represent values

of v in the analytical steady-state solution. The · symbols indicate values of v at locations where the upper layer is essentially massless;

at such locations the velocity is essentially the same as in the lower layer, due to the effect of shear stress between layers.
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layer agrees very closely with the values obtained in the analytical steady state. The jump discontinuity in v

then generates a jump discontinuity in the slope of the free surface, which is illustrated in the middle frame.

The slopes of the free surface, and the slope of the interface in the top frame, were calculated in [10] for the

analytical steady state. An inspection of numerical output (not shown here) indicates that the computed

slopes agree with the analytical values to two or three significant digits.

5.2.2. Circular channel

Next consider the case where a trapezoidal channel is bent into a circle to form an annular fluid

domain. Consider a square region that is discretized with 128 mass cells in the x-direction and 128

mass cells in the y-direction, with Dx = Dy = 10 km, and let (x0,y0) denote the center of that region.

For each mass cell, let r denote the distance from (x0,y0) to the center of that cell. Assume that the

depth of the fluid in a cell is nonzero if and only if r1 < r < r2, where r1 and r2 are positive constants.

Also assume that r1 = r2/4 and that the inner sloping side, outer sloping side, and level bottom each
occupy one-third of the radial interval [r1,r2]. In the following, r2 is Dx less than half the side of the

square.

The layer densities, initial layer thicknesses, Coriolis parameter, baroclinic timestep, and barotropic

timestep are the same as in the case of the straight channel described above. The shear stress between

layers has the same form as above, but with AV = 0.0005. The system is forced by a tangential wind

stress that points counter-clockwise along the length of the channel. The wind stress is constant in t

and is directly proportional to the radius r, with a magnitude of smax = 0.1 N/m2 at the outer radius

r = r2.
For the present computation, the bottom stress is represented as sbot = cDq2u, where cD = 0.0005, instead

of the quadratic form used above. In situations where the tangential velocity is determined by a balance

between wind stress and bottom stress, the bottom stress is proportional to r since the wind stress is pro-

portional to r. If the bottom stress is proportional to tangential velocity, then this velocity is also propor-

tional to r. The resulting rigid-body rotation is a convenient formulation for an analytical steady state. As

in the preceding test, the bottom stress and wind stress decay linearly to zero over a vertical range of one

meter.

We next derive the analytical steady state. At any point in the channel, let uk and vk denote the radial
(cross-channel) and tangential (along-channel) components of velocity, respectively, in layer k for

k = 1,2. The momentum equations can then be written in the polar form
Duk
Dt

� v2k
r
� fvk ¼ � oMk

or
þ gDsrk

Dpk
;

Dvk
Dt

þ ukvk
r

þ fuk ¼ � 1

r
oMk

oh
þ gDshk

Dpk
;

ð45Þ
where D/Dt denotes the material derivative, and Dsrk ¼ srk�1=2 � srkþ1=2 and Dshk ¼ shk�1=2 � shkþ1=2 are the ra-

dial and tangential components, respectively, of the vertical stress difference across layer k. Now suppose
that the system is at a steady state for which each fluid parcel moves at a uniform speed in a circle centered

about r = 0 and for which the layer thicknesses are independent of the angle h. The first assumption implies

uk = 0 and Dvk/Dt = 0, and the tangential directions of the wind, shear, and bottom stresses imply Dsrk ¼ 0.

The system (45) then simplifies to
� v2k
r
� fvk ¼ � oMk

or
; ð46Þ

Dshk ¼ 0: ð47Þ
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The quantity v2k=r is the centripetal acceleration, and in the case f = 0 the free surface and the layer interface

vary with r so that oMk/or provides the required acceleration. In the present situation the tangential com-

ponents of the wind, shear, and bottom stresses are given by swind = smax(r/r2),
Fig. 1

section

positiv
sshear ¼
q1AV

Dz
ðv1 � v2Þ; ð48Þ
and sbot = cDq2v2, respectively. Here, Dz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2AV=f

p
, as in (44).

Consider a region where only one layer has positive thickness, and denote this layer with index k. In this

case shk�1=2 ¼ swind and shkþ1=2 ¼ sbot, and Eq. (47) then implies sbot = swind. As before, assume v1 = v2 in loca-

tions where one layer vanishes. We then have
v1 ¼ v2 ¼
smax

q2cDr2

� �
r: ð49Þ
Now let ztop denote the elevation of the free surface at the top of the fluid. If layer 1 is the active layer, then

Mk = M1 = a1ptop + gztop = gztop. (Here, we assume ptop = 0.) If layer 2 is the active layer, then

M2 = M1 � ptop(a1 � a2) = M1 = gztop. In either case, we have Mk = gztop. Eqs. (46) and (49) then imply
oztop
or

¼ 1

g
oMk

or
¼ c

g
ðf þ cÞr; ð50Þ
where c = smax/(q2cDr2). The elevation ztop then varies quadratically with the radius r.

If both layers have positive thickness, then swind = sshear = sbot. Since swind = sbot, it follows that v2 has
the value given in (49). Eq. (48) for the shear stress, together with sshear = swind, implies
v1 ¼ v2 þ
Dz

q1AV

swind ¼ smax

1

q2cD
þ Dz
q1AV

� �
r
r2

ð51Þ
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for the case of two active layers. The velocities v1 and v2 are each proportional to r, so the momentum equa-

tion (46) implies that M1 and M2 are each quadratic in r. It then follows that the elevations of the free sur-

face and layer interface are also quadratic in r.

The value of v1 in (51) is greater than the value of v1 given in (49) for the case of one active layer. The

expression (46) for oMk/o r then implies that the free surface varies more rapidly with r when there are two
active layers than when there is one active layer.

For the present computation, the system begins at rest, and the steady wind stress is applied for t > 0.

Because of the action of the wind stress and the Coriolis effect, the fluid in the upper layer shifts towards

the outer edge of the annular domain, and the fluid in the lower layer wells upward along the inner edge.

Fig. 12 shows a contour plot of the elevation of the free surface at day 400. The figure indicates that the

computed solution is very nearly radially symmetric. Fig. 13 shows cross-sections of the solution for fixed y

through the center of the domain, also at day 400. The top frame in that figure illustrates how the fluid in

the upper layer has migrated to the outer rim of the fluid domain. The middle figure shows the elevation of
free surface, and in particular it illustrates how the free surface is steeper in locations where both layers have

positive thickness. The bottom frame indicates that the computed values of velocity agree closely with the

values obtained in the analytical steady state.

The computation was continued past day 400 to day 2000. Over this time period the solutions (not

shown here) remain similar to the solution shown in Figs. 12 and 13, except that a wavy pattern appears

in the contours of the free-surface elevations. These waves are visible by day 600 and maintain nearly the

same amplitude through day 2000. The waves are confined to the contours slightly below zero elevation. At

day 600 there are 12 wavelengths per contour, and by day 1000 there are eight wavelengths per contour.
These wavelengths are far longer than the grid scale, so apparently they are a result of hydrodynamic insta-

bility instead of any kind of numerical instability.
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Fig. 13. Upwelling and downwelling in a circular channel. These plots show cross-sections through the center for fixed y at day 400.

The shaded regions represent bottom topography. In the bottom frame, the solid line segments represent values of tangential velocity

in the upper layer in the analytical steady state, and the circles represent computed values. The fluid flows counter-clockwise in the

annular domain, so on the right side the velocity is into the page, whereas on the left side the velocity is out of the page.



In this computation the barotropic equations are solved explicitly with the forward–backward method

described in Section 3.3. The computation was repeated, but while solving the barotropic equations with

the ADI method discussed in that section. With the ADI method, the wavy patterns do not appear, but

instead the numerical solution remains at a steady state that agrees closely with the analytical steady state.

However, the validity of the ADI solution is questionable because of the experience with Rossby waves
described in Section 5.1.

5.3. Double gyre

The present subsection describes a test in which a spatially varying wind stress generates a double-gyre
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parameter with the linear beta-plane approximation f = f0 + b(y � y0), where f0 and b are the values of f

and of/oy at 45� N.

The baroclinic time increment is Dt = 2400 s. The barotropic equations are solved with the explicit

method described in Section 3.3, with a nominal barotropic time increment of 70 s. There are then 35

barotropic substeps per baroclinic step. The horizontal viscosity is AH = 0, except for the computation
illustrated in Fig. 18. The bottom stress and the shear stress between layers are implemented in the

same manner as in Section 5.2. The former uses the quadratic version sbot = cDq2|u|u, with cD = 0.003.

The system is forced at the upper surface by a steady wind stress s = (sx,sy) for which sy = 0 and

sx ¼ smax cos½pLðy � y0Þ�, where smax = 0.1 N/m2. The wind stress points eastward in the middle of the domain

and westward near the northern and southern boundaries. The wind stress decays linearly to zero over a

vertical range of one meter, as in Section 5.2.

Because of the action of the wind stress and the Coriolis effect, the flow develops two closed loops

(gyres). In the northern gyre the flow is counterclockwise, and in the southern gyre the flow is clockwise.
In addition, the fluid in the upper layer shifts southward, so that the free surface becomes elevated in

the southern gyre and depressed in the northern gyre. This is illustrated in Fig. 14, which shows the solution

after 25 days. The system is near a state of geostrophic balance between the Coriolis and pressure terms, i.e.,

(�fvr,fur) � �$Mr in layer r. But M1 = gztop, so the velocity (u1,v1) in the upper layer is tangent to curves of

constant elevation of the free surface. The curves in Fig. 14 can then be regarded as streamlines for the flow

in the upper layer.

As t increases the flow becomes more complex. By about day 500 (not shown here) the thickness of the

upper layer is near zero in a small portion of the northern half of the domain, due to the continued south-
ward shift of the fluid in the upper layer, and by day 600 meanders and eddies have begun to appear in the

west-to-east jet in the middle of the domain and in the currents along the northern and southern
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Fig. 15. Contour plot of the free-surface elevation at day 1500. The contour interval is 5 cm, with lower elevations in the northern

region and higher elevations in the southern region. The maximum and minimum elevations are approximately 85 and �71 cm,

respectively.
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boundaries. As t increases further the details of the flow continue to vary, but the general pattern remains

similar. For example, the elevation of the free surface at day 1500 is shown in Fig. 15. The meanders in the

flow are evident, and various eddies can be recognized by relatively small closed loops in the contours. The

free surface is still elevated in the southern region and depressed in the northern region, and the flow still

follows the general pattern of clockwise circulation in the southern gyre and counter-clockwise circulation
in the northern gyre. The flow along the western boundary consists of intense northward and southward

boundary currents which meet in the middle, and the maximum velocity in these western boundary currents

is approximately 1.5 m/s.

The thickness of the upper layer at day 1500 is shown in Fig. 16, which indicates that the lower layer has

welled up to the surface over much of the northern half of the domain. An inspection of numerical output

(not shown here) indicates that for many mass cells the thickness of the upper layer is on the order of cen-

timeters or millimeters, and the minimum computed thickness of the upper layer is approximately 10�9 m.

Fig. 17 shows a close-up view of the flow at day 1500 in a region to the west of the center of the fluid
domain, where the west-to-east jet is relatively active. The curves are contours of the free-surface elevation

and the arrows represent velocity vectors. The alignment of the velocity vectors with the contours illustrates

the geostrophic balance in the flow. The velocity vectors are shown at every grid point, or more precisely,

for each mass cell the value of u on the western edge and the value of v on the southern edge are combined

into a vector (u,v) that is located at the center of the mass cell. A slightly more realistic velocity field would

be obtained with averages of u and v across the cell. However, such averaging would obscure any grid noise

that might be present, whereas the vector field shown in Fig. 17 indicates that grid noise is not present to a

perceptible degree.
Fig. 16. Contour plot of the thickness of the upper layer at day 1500. The contour interval is 10 m. Over much of the northern region

the lower layer wells up to the surface, so the thickness of the upper layer is near zero in such locations. The maximum and minimum

computed thicknesses for the upper layer are approximately 244 and 10�9 m, respectively.



Fig. 17. Close-up view of the velocity field in the upper layer at day 1500, together with contours of the elevation of the free surface.

This plot shows a subregion to the west of the center of the fluid domain, where the west-to-east jet is relatively active. Velocity vectors

are shown at every grid point, and the contour interval for the free surface is 5 cm.
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A plot of the velocity field in the lower layer (not shown here) indicates that the flow patterns in the two

layers share some features, but they are not the same. For example, a small eddy has developed to the left of
the center of Fig. 17, and this eddy is confined to the upper layer.

As an experiment, the preceding computation was repeated with a nonzero value of the horizontal vis-

cosity given by AH = 100 m2/s. All other aspects of the model were the same as in the preceding computa-

tion. The elevation of the free surface for this run is shown in Fig. 18. Compared to the solution shown in

Fig. 15, the west-to-east jet is less active, the western boundary layer is thicker, and the flows along the

northern and southern boundaries are less intense, as expected. The insertion of horizontal viscosity also

causes a slight shift in the location where the western boundary currents separate from that boundary;

in operational situations, ocean modelers sometimes tune the value of viscosity to adjust the locations
where such separation takes place.

The preceding computation was also performed with the leapfrog version of the code that is described in

Section 5.1.2. In this version, the bottom, shear, and wind stresses are represented in the same manner as in

the two-level code used in the computations discussed above. For the Asselin filter that is used to suppress

the sawtooth computational mode in t, the smoothing parameter is c = 0.125, so the Asselin filter involves a

weighted average with coefficients (0.125,0.75,0.125). In addition, the horizontal viscosity is set to the value

AH = 100 m2/s. For a few hundred model days, the code produced reasonable results, but the computation

crashed at about day 503. The instability was first manifested in regions where a layer thickness is near zero
and a strong horizontal shear is present. It might be possible to mitigate the problems by stronger regular-

ization procedures, such as increasing the vertical distances over which the wind stress and bottom stress

decay to zero, but these options were not pursued here. The problems are perhaps related to the computa-

tional mode in t and/or oscillatory behavior allowed by centered spatial differencing of the nonlinear and

vorticity terms. These issues are avoided by the algorithms that have been discussed in the present paper.
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Fig. 18. Contour plot of the free-surface elevation at day 1500, when the horizontal viscosity is AH = 100 m2/s. For the preceding plots

this viscosity is zero.
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6. Summary

The purpose of this paper is to describe some further developments related to the implementation and

testing of the two-level time-stepping method developed in [10].

One such step is the formulation of a test problem involving a two-layer fluid in a channel. This system

admits both gravity waves and Rossby waves, and within each class the system admits both external and

internal waves. The separation into external and internal modes makes it possible to test the time-stepping

methods for the barotropic and baroclinic subsystems independently. Here, the emphasis is on Rossby
waves, as a simpler test problem involving gravity waves was already described in [10]. The present analysis

yields exact solutions, up to the numerical accuracy in computing eigenvalues and eigenvectors of certain

matrices.

The algorithmic developments include the following.

(1) The baroclinic velocity must be extracted from the baroclinic momentum density, for the sake of com-

puting fluxes of mass and momentum. Here, well-behaved velocities are obtained with a procedure that

involves the shear stress between layers and the implicit implementation of the Coriolis terms with the
velocity form, not momentum form, of the baroclinic momentum equation. The final values of baro-

clinic momentum density are then constructed with a multiplication.

(2) In regions where layer interfaces intersect variable bottom topography, a given layer can have widely

varying thicknesses in adjacent mass or momentum cells. In order to prevent unrealistically large trans-

ports of mass or momentum from thick cells into adjacent thin cells, we use the concepts of ‘‘available
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mass’’ and ‘‘available momentum’’ when computing mass and momentum fluxes. These quantities are

defined in terms of the portion of a layer, in a given cell, that lies above the stairstep bottom

topography.

(3) The barotropic (fast) subsystem can be solved implicitly with long time steps or explicitly with many

short substeps. In a test problem involving an external Rossby wave, an alternating-direction implicit
method gives inaccurate results, whereas good results are obtained with an explicit scheme. With the

explicit scheme, a simple second-order time average is used near the beginning of each (long) baroclinic

time interval in order to eliminate numerical noise caused by a slight discontinuity in forcing between

consecutive baroclinic intervals.

(4) The baroclinic mass equation of [3] does not yield exact conservation of mass in individual layers.

Exact conservation can be obtained with the unsplit mass equation, and stable behavior can be

obtained by enforcing a kind of consistency between the layer mass equations and the barotropic (ver-

tically summed) mass equation. Related ideas have been used elsewhere; the present version involves
an upwind formulation of flux adjustments and the concept of available mass.

The two-level method, with associated algorithms, gives good results in some numerical experiments

involving Rossby waves, variable bottom topography, and a double-gyre circulation that displays meanders

and eddies. In particular, the method avoids the disadvantages of the computational mode that is allowed

by the traditional leapfrog method, and when the explicit viscosity is set to zero the model behaves stably

and does not display grid noise.
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